Pyrophosphoric lactone modified polyester(PATT) that contains two phosphorous functional groups in one unit base resin structure was synthesized to prepare a non-toxic reactive flame retardant coatings. Then the PATT was cured at room temperature with isocyanate, Desmodur IL, to get a two-component polyurethane flame retardant coatings(PIPUC). Comparing the physical properties of the films of PIPUC with the film of non-flame retardant coatings, there was no degradation observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by 45˚Meckel burner method were 3.1~4.4cm and LOI values recorded 27~30%. These results indicate that the coatings prepared in this study is good flame retardant one. The surface structure of coatings investigated with SEM does not show any defects and phase separation.
글로우 고압 방전 방식에 의한 저온 플라즈마(Non-thermal Plasma, NTP) 공정은 액상에서 광전자, 전자, OH-라디칼, 전자기 에너지 등 반응성이 높은 화학물질의 형성할 수 있다. 이 NTP는 공기를 carrier 가스로 활용하여 반응성이 높은 화학종을 생성하는데, 유기물을 효과적으로 산화시키는 고도산화공법의 일종이다. NTP의 강력한 산화력에도 불구하고, NTP 공정에서 발현되는 오염물질의 분해 메커니즘과 그 중간부산물 및 최종 생성물의 경로는 명확하게 밝혀지지 않아 연구가 필요한 실정이다. 본 연구는 폐수 내 다양한 오염물질이 어떠한 메커니즘으로 분해되는가를 실험적으로 규명하고, 2종(sulfamethazine sodium salt와 sulfathiazole sodium salt)의 sulfonamide 계열 항생제에 NTP 공정을 적용하여 제거성능과 분해경로를 검증한다. 또한, 대상 항생제의 분해가 폐수처리 과정에서의 분해 동역학 및 생태 독성과 어떻게 관련되는지를 확인하기 위해 주요 중간부산물 및 신규생성물의 fate를 확인한다. NTP 공정의 진보된 효과를 증명하기 위해 반응성 화학종인 과산화수소 (H2O2)의 순간 생성량을 정량하였으며, OH-라디칼 생성의 간접지표인 N-Dimethyl-4-Nitrosoaniline (RNO) 물질의 분해동역학적 성질을 바탕으로 분해속도계수를 산출하였다. H2O2의 농도는 초기 NTP 공정 적용 시 300 mg/L 까지 증가하였고, 1440 min 적용 시 약 12 mg/L로 감소하며 OH-라디칼 생성과 오염물질 분해에 관여하는 것을 확인하였다. 또한 RNO 물질은 일차함수 형태로 감소하며, 0.91/hr의 속도로 제거되었다. LC-MS/MS (6410 LC-ESI/MS/MS (QQQ), Agilent, USA) 분석을 통해 검출된 중간부산물과 신규생성물을 통해 분해경로를 확인하였다. 문헌과 실험결과의 비교는 NTP 공정이 OH-라디칼 발생 및 산화 환원제와 반응종의 상호 작용으로 인한 산화력 측면에서 다른 산화 공정보다 우수함을 보여준다. Daphnia magna를 이용한 생태독성(Toxicity Unit, TU) 결과는 폐수처리에 대한 NTP 공정 적용이 반응성 화학종의 생성촉진을 통해 독성의 저감에 기여함을 보여주며, 실험결과 TU 값은 초기 2.2 대비 24 hr 적용 후 0.8로 크게 감소하였고, 충분한 체류 시간이 핵심 설계요소임을 밝혔다. 궁극적으로 본 연구는 항생제의 효과적인 제어 및 부산물 관리방안에 대한 유용한 정보를 제공한다.