검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composite material has the strong durability and light weight as inhomogeneous material. Nowadays, CFRP composite has been noticed as the light weight, high strength and long fatigue life. This study has been carried actively. In this study, the properties of tensile strengths of CFRP, stainless steel are analyzed, and compared each other. In order to secure the data, the tensile specimens with notches of same size by using CFRP, and stainless steel are manufactured and experimented. When the forced displacement of about 11.5 mm proceeds in case of stainless steel specimen, the maximum load of 31000 N is shown simultaneously with the fracture of specimen. When the forced displacement of about 6 mm proceeds in case of CFRP specimen, the maximum load of 16000 N is shown. So, the structural safety becomes highest at CFRP specimen among these specimens. In this study, the finite element analysis is carried out in order to compare with the experimental results. It is verified that the experimental and analysis results are similarly shown each other. Through the result of this study, it is thought that the simulation analysis data with no experiments are trustworthy at using as the real tensile experimental data.
        4,000원
        2.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Composite materials have the strong durability and light weight as inhomogeneous material. These material are manufactured by combining and maximizing the advantage of each material. Among these various materials, stainless steel, aluminum and brass has been used generally. Prior to using, the preparatory experiments are demanded in order to obtain the material strengths. In this study, the tensile tests are carried out with the specimens of stainless steel, aluminum and brass. These tensile specimens of same standards are made with the notches at both sides of specimen. When the forced displacement of about 11 mm proceeds in case of stainless steel specimen, the maximum load of 31000 N is shown simultaneously with the fracture of specimen. When the forced displacement of about 6 mm proceeds in case of aluminum specimen, the maximum load of 20600 N is shown simultaneously with the fracture of specimen. When the forced displacement of about 7 mm proceeds in case of brass specimen, the maximum load of 25000 N is shown. In this study, the finite element analysis as ANSYS program is carried out in order to verify these experimental results. The experimental and analysis results are similarly shown each other. Through the result of this study, the analysis data with no experiments are thought to be trustworthy as the tensile experimental data.
        4,000원