Carbon nanofibers (CNFs) are promising materials for the construction of energy devices, particularly organic solar cells. In the electrospinning process, polyacrylonitrile (PAN) has been utilized to generate nanofibers, which is the simplest and most popular method of creating carbon nanofibers (CNFs) followed by carbonization. The CNFs are coated on stainless steel (SS) plates and involve an electropolymerization process. The prepared Cu, CNF, CNF–Cu, PANI, PANI–Cu, CNF–PANI, and CNF–PANI–Cu electrode materials’ electrical conductivity was evaluated using cyclic voltammetry (CV) technique in 1 M H2SO4 electrolyte solution. Compared to others, the CNF–PANI–Cu electrode has higher conductivity that range is 3.0 mA. Moreover, the PANI, CNF–PANI, and CNF–PANI–Cu are coated on FTO plates and characterized for their optical properties (absorbance, transmittance, and emission) and electrical properties (CV and Impedance) for organic solar cell application. The functional groups, and morphology-average roughness of the electrode materials found by FT–IR, XRD, XPS, SEM, and TGA exhibit a strong correlation with each other. Finally, the electrode materials that have been characterized serve to support and act as the nature of the hole transport for organic solar cells.
The biogeochemical information of riverine organic matter gives a detailed and integrated recording of natural and anthropogenic activity within a watershed. To investigate the changes in quality and quantity of organic carbon transporting from mountain to ocean via river channels, we estimated the concentrations of dissolved (DOC) and particulate organic carbon (POC), and then traced the source origin of POC using stable carbon isotopes ratio before and after summer rainfalls in the Tamjin River and Ganjin Bay, Korea. Along the small watershed, a total of 13 sites including headwaters, dam reservoir, river and estuary were established for the study. We found some interesting findings in the aspect of distribution of DOC/POC concentration changing their origin sources dynamically flowing downstream. In particular, the river channel transport downstream mainly DOC to river mouth, although upper dam reservoir increased POC concentration by phytoplankton production in summer. Whereas, in the river mouth and estuary, POC was dominated not only by local supply from nearby reed saltmarsh, but also by marine phytoplankton production, respectively. The findings can contribute to increasing the understanding of riverine organic carbon transport in upper large dam and lower open estuary system.