The conversion of CO2 into solar fuels by photocatalysis is a promising way to deal with the energy crisis and the greenhouse effect. The introduction of oxygen vacancy into semiconductor has been proved to be an effective strategy for enhancing CO2 photoreduction performance. Herein, TiO2- x nanostructures have been prepared by a simple solvothermal method and engineered by the reaction time. With the prolonging of reaction time, the oxygen vacancy signal gradually increases while the band gap becomes narrow for the as-synthesized TiO2- x nanostructures. The results show that the TiO2- x-6 h, TiO2- x-24 h, and TiO2- x-48 h samples have the main product of CH4 (more) and CO (less) for CO2 photoreduction. Among the three oxygen vacancy photocatalysts, the TiO2- x-24 h sample shows the highest CH4 generation rate of 41.8 μmol g− 1 h− 1. On the basis of photo/electrochemical measurements, the TiO2- x-24 h sample exhibits efficient electron–hole separation and charge transfer capabilities, thus allows much more electrons to participate in the reaction and finally promotes the photocatalytic CO2 reduction reaction. It further confirms that the optimization of oxygen vacancy concentration could facilitate the photoinduced charge separation and accordingly improve photocatalytic CO2 conversion.
Calcia (CaO) stabilized cubic-HfO2 is studied by density functional theory (DFT) with generalized gradient approximation (GGA). When a Ca atom is substituted for a Hf atom, an oxygen vacancy is produced to satisfy the charge neutrality. The lattice parameter of a 2×2×2 cubic HfO2 supercell then increases by 0.02 Å. The oxygen atoms closest to the oxygen vacancy are attracted to the vacancy as the vacancy is positive compared to the oxygen ion. When the oxygen vacancy is located at the site closest to the Ca atom, the total energy of HfO2 reaches its minimum. The energy barriers for the migration of the oxygen vacancy were calculated. The energy barriers between the first and the second nearest sites, the second and the third nearest sites, and the third and fourth nearest sites are 0.2, 0.5, and 0.24 eV, respectively. The oxygen vacancies at the third and fourth nearest sites relative to the Ca atom represent the oxygen vacancies in undoped HfO2. Therefore, the energy barrier for oxygen migration in the HfO2 gate dielectric is 0.24 eV, which can explain the origin of gate dielectric leakage.