검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.05 구독 인증기관·개인회원 무료
        Domain decomposition method (DDM) has been widely employed for the numerical analysis of large-scale problems due to its applicability to parallel computing. DDM divides the modeling domain into a set of subdomains and obtains the entire solution iteratively until the values of each subdomain which are shared with other subdomains, such as boundary values, are converged. Therefore, in general, DDM is a memory-efficient iterative algorithm with inherent parallelism on the geometric level. APro, the process-based total system performance assessment model, aims for simulating the radionuclide transport considering coupled multi-physics phenomena occurring in large-scale geological disposal system, which are inevitably accompanied by huge memory burden. Therefore, DDM is applicable for the large-scale problem of APro and its performance in parallel computing needs to be examined. The DDM solvers provided by COMSOL which constitute APro can be classified into two methods. One is the overlapping Schwarz method that each subdomain overlaps its neighboring domains and the other is the Schur complement method that subdomains are non-overlapping and separated by boundary domains. For the Schwarz method, the additive, hybrid, multiplicative and symmetric methods can be selected according to the solution update scheme. And for the Schur method, the additive and multiplicative ordering options can be chosen for solving Schur complement system. In this study, the calculation efficiency of the DDM solvers in COMSOL and the applicability to the cluster environment were examined. In aspect of efficiency, the memory requirements with different number of subdomains and calculation schemes were compared in a single node. Then, the memory requirements with increasing number of disposal tunnels and deposition holes were investigated in multiple nodes. As a result, on the cluster environment, with the help of distributed memory architecture which enables efficient memory usage, the applicability of DDM solvers to the large-scale problem of APro was confirmed.
        3.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        다분야통합해석에 기반한 설계문제는 일반적으로 전체 설계과정에서 매우 큰 계산시간을 요구하며, 이러한 계산시간을 단축하기 위해 병렬처리시스템을 도입하는 것이 필수적이다. 그러나 다분야통합해석에 기존의 병렬처리기법을 적용하기 위해서는 해석에 필요한 모든 CAE 소프트웨어들이 병렬처리시스템의 모든 서버에 설치되어 있어야 하며, 이는 매우 큰 CAE 소프트웨어의 비용을 필요로 한다. 본 논문에서는 이러한 문제점을 해결하기 위해 가중치 기반 멀티큐 부하분산 알고리즘을 제안하였다. 제안된 알고리즘은 서버들의 성능과 설치된 CAE 소프트웨어들의 종류가 각기 다른 이종 병렬처리시스템을 고려하였으며 성능검증을 위해 선입선출(First Come First Servre) 알고리즘을 적용한 경우와 비교한 전산실험을 수행하였다.
        4,000원