PURPOSES: The objective of this study was to develop an asphalt pavement response model for a subsurface cavity section using the 3D finite element method and a statistical approach.
METHODS: It is necessary to analyze the structural behavior of asphalt pavement with a subsurface cavity to evaluate the degree of risk for a road cave-in. A 3D finite element model was developed to simulate the subsurface cavity underneath asphalt pavement and was verified using the ILLIPAVE program. Finite element analysis was conducted for asphalt pavement sections with different asphalt layer thickness/modulus, and cavity depth and length, to generate the artificial pavement response database. The critical pavement response considered in this study was the tensile strain at the bottom of the asphalt layer because fatigue cracking is the main cause of road cave-in. The relationship between the critical pavement response and influencing factors was investigated using the pavement response database. The statistical regression approach was adopted to develop the asphalt pavement response model for predicting the critical pavement response of asphalt pavement with a subsurface cavity.
RESULTS : It was found from the sensitivity analysis that the asphalt layer thickness or modulus, and cavity depth or length, are the major factors affecting road cave-in incidents involving asphalt pavement. The asphalt pavement response model showed high accuracy in predicting the tensile strain at the bottom of asphalt layer. It was found from the verification study that the R square value between finite element model and pavement response model were 0.969 and 0.978 in the cavity and intact sections, respectively.
CONCLUSIONS: The work reported in this paper was intended to figure out the pavement structural behavior and to develop a pavement response model for the occurrence of cavities underneath asphalt pavement using 3D finite element analysis. In the future, critical pavement response will be utilized to establish the criteria of risk of road cave-in based on various different conditions.
역학적 경험적 포장 설계법을 도입하려는 현재의 연구추세에 발 맞추어 정확한 응력, 변형률, 변형을 기초로 포장구조체를 해석하기 위한 역학적 접근방법이 필요한 시점이다. 기존의 실험결과에 따르면 연성포장 구조의 기층에 이용되는 자갈과 노상층에 이용되는 노상토등의 포장 하부재료는 반복하중 조건하에서 비선형 회복탄성계수의 특징을 따르는 것으로 나타났다. 이 비선형 거동은 재료의 현재 응력에 의한 회복탄성계수 모델로 나타나질 수 있으며 정확한 해를 구할 수 있는 역학적 방법중의 하나인 유한요소 해석 방법에 적용되어 질 수 있다. 이 연구에서는 비선형 해석기법과 효과적인 해 수렴기법이 구현된 재료 모델 부 프로그램을 범용 유한요소 프로그램의 하나인 아바쿠스에 적용시켰다. 이 수치해석 방법에는 더 정확한 해를 찾기 위한 체눈분할에 의해 만들어진 유한요소 모델이 이용되었다. 이런 일련의 방법들에 의한 포장구조체의 해석결과, 2차원과 3차원 비선형 유한요소 해석의 결과가 큰 차이를 보이는 것으로 나타났다. 또한, 사용된 부 프로그램은 미연방 항공국 공항 시험포장에서 측정되어진 결과 값에 의해 비교 검증되었다.
시험도로에서 포장구조진단기(FWD)를 사용하여 48시간 동안 연속적으로 온도구배에 따른 콘크리트 포장의 거동을 조사하였다. 포장슬래브의 중앙부에서 측정한 최대 처짐의 경향은 대기온도 및 온도구배와 유사하였으며 오전 8시에서 12시 사이에 매우 급격한 변화를 나타내었다. 동적지지력과 줄눈의 처짐은 대기온도 및 온도구배와 반대되는 경향을 나타내었으며, 동적지지력은 값이 커질수록 온도구배의 영향을 심하게 받는 것으로 판단되었다. 탄성계수의 변화양상을 AREA법과 MET을 사용하여 조사하였다. 역계산된 탄성계수는 동적지지력이 시간에 따라 나타내는 변화와 같은 경향을 나타내었다. 줄눈에서의 하중전달율은 다우웰 바의 잠김 작용으로 인하여 아침에 최대값을 나타내었으며 이와 관련하여 향후 정밀한 조사가 필요한 것으로 판단되었다.