A baffle system for an airglow photometer, which will be on board the Korea Sounding Rocket-III(KSR-III), has been designed to suppress strong solar scattered lights from the atmosphere below the earth limb. Basic principles for designing a baffle system, such as determination of baffle dimensions, arrangement of vanes inside a baffle tube, and coating of surfaces, have been reviewed from the literature. By considering the constraints of the payload size of the KSR-III and the incident angle of solar light scattered from the earth limb, we first determined dimensions of a two-stage baffle tube for the airglow photometer. We then calculated positions and heights of vanes to prohibit diffusely reflected lights inside the baffle tube from entering into the photometer. In order to evaluate performance of the designed baffle system, we have developed a ray tracing program using a Monte Carlo method. The program computed attenuation factors of the baffle system on the order of 10 -6 for angles larger than 10°, which satisfies the requirements of the KSR-III airglow experiment. We have also measured the attenuation factors for an engineering model of the baffle system with a simple collimating beam apparatus, and confirmed the attenuation factors up to about 10 -4. Limitation of the apparatus does not allow to make more accurate measurements of the attenuation factors.
The Automated Eichner Iris Photometer(AEIP) at the Korea Basic Science Center was tested for its function and the proper procedure for photographic photometry. The AEIP requires about three hours for reaching the electrical stability. When the iris is controlled automatically, the repeatability of density unit (DU) is accurate in the uncertainty of (0.0028∼0.0048 0.0028∼0.0048 )DU. The iris reading is found to be accurate within the mean error of 0.m05 0.m05 , which could be reduced to 0.m02 0.m02 by the manual control. To check the applicability of the AEIP. each two photographic plates for UBV colors which were taken by Dupuy and Zukauskas(l976) for the open cluster Byur 2, were measured by using the AEIP. and the photographic magnitudes and colors of the stars in Byur 2 were determined. discussing the previous results.
We have observed 85 UBV standard stars(V<6) with SNU photoelectric photometer system and 24" Cassegrain reflector at Sobaeksan Observing Station during the period between January and May, 1980 in order to examine the photometer system and to determine atmospheric extinction coefficients. From five night observations, the following results were obtained: (1) The set of filters(V=2mm GG 495, B=2mm GG 385+1mm BG 12, U=2mm UG 2) is better than the other filter set used in our tests on the basis of linear instrumental calibrations for V and B filters. (2) The SNU detecting system is very stable within σ = 0.002 in magnitude in a night but the variation in its stability from night to night is not negligible. (3) The extinction coefficients were derived from two different methods and we have found no systematic seasonal variation in the extinction coefficients although the mean dispersion is considerable.
The dual channel Pierce-Blitzstein photometer (PBPHOT) was productively used at the Flower and Cook Observatory to provide 60 years of study of binary systems and other cosmic objects. We review the history of this instrument, discuss its calibration, and recall some personal and professional interactions with Professor Robert H. Koch.