In this study, the thermoelectric power and resistivity of the perovskite manganiteLa0.75Ba0.25MnO3 were investigated in the temperature range 300K-1200K. The electrical resistivity andthermoelectric power indicate a transport mechanism dominated by adiabatic small-polaron hopping. Thepower factor increases from 2×10−6W/mK2 to 1×10−5W/mK2 as to the temperature increases from 400K to1200K, which indicates that the compound is highly feasible as a thermoelectric material at high temperatures.
The dc resistivity and thermoelectric power of bilayered perovskite La1.4(Sr0.2Ca1.4)Mn2O7 weremeasured as a function of the temperature. In the ferromagnetic phase, ρ(T) was accurately predicted by a0+a2T2+a4.5T4.5 with and without an applied field. At high temperatures, a significant difference between theactivation energy deduced from the electrical resistivity and thermoelectric power, a characteristic of smallpolarons, was observed. All of the experimental data can be feasibly explained on the basis of the small polaron.