Unlike mouse results, cloning efficiency of nuclear transfer from porcine induced pluripotent stem cells (piPSCs) is very low. The present study was performed to investigate the effect of cell cycle inhibitors on the cell cycle synchronization of piPSCs. piPSCs were generated using combination of six human transcriptional factors under stem cell culture condition. To examine the efficiency of cell cycle synchronization, piPSCs were cultured on a matrigel coated plate with stem cell media and they were treated with staurosporine (STA, 20 nM), daidzein (DAI, 100 μM), roscovitine (ROSC, 10 μM), or olomoucine (OLO, 200 μM) for 12 h. Flow Cytometry (FACs) data showed that piPSCs in control were in G1 (37.5±0.2%), S (34.0±0.6%) and G2/M (28.5±0.4%). The proportion of cells at G1 in DAI group was significantly higher than that in control, while STA, ROSC and OLO treatments could not block the cell cycle of piPSCs. Both of viability and apoptosis were affected by STA and ROSC treatment, but there were no significantly differences between control and DAI groups. Real-Time qPCR and FACs results revealed that DAI treatment did not affect the expression of pluripotent gene, Oct4. In case of OLO, it did not affect both of viability and apoptosis, but Oct4 expression was significantly decreased. Our results suggest that DAI could be used for synchronizing piPSCs at G1 stage and has any deleterious effect on survival and pluripotency sustaining of piPSCs.
Pluripotent stem cells are cells that have a self-renewal capacity and the ability to differentiate into all lineages. These cells can be divided into naive- and primed-state pluripotent stem cells according to their pluripotent state. Only the naive state comprises a full pluripotency or ground state that contributes to germ-line transmission. Naive states are found in specific permissive strains or species, such as 129, C57BL/6 and BALB/C in mice. However, a number of attempts have been made to derive naive-state pluripotent stem cell lines from non-permissive species, including humans and pigs, using various exogenous factors including GSK3β and MEK inhibitors (2i), LIF, hypoxic conditions and up-regulation of Oct4 or Klf4. Therefore, in this study we investigated whether a naive pluripotent stem cell line could be derived from porcine embryonic fibroblasts (PEFs) via previously reported factors. Our mouse embryonic stem cell (mESC)-like cell lines expressed the pluripotency markers Oct4, Sox2 and Nanog and a stable mESC-like morphology for more than 50 passages. In addition, these cell lines could be sequentially reprogrammed into mESC-like induced pluripotent stem (iPS) cells from secondary or tertiary fibroblast-like cells differentiated from mESC-like iPS cells by addition of doxycycline (DOX), LIF and 2i. Our results suggest that, as a non-permissive species, porcine stem cells can be induced into mESC-like iPS cells from PEFs by various exogenous factors, including continuous transgene expression, 2i and LIF. However, further work that aims to effectively induce the activation of endogenous transcription factors is necessary to derive authentic naive-state pluripotent porcine stem cells.