재생 불가능한 에너지 자원이 수년에 걸쳐 고갈됨에 따라, 재생 에너지 생산을 위한 보다 효과적인 방법에 대한 연구가 증가되었다. 연로전지 개발의 한 분야인 미생물 연료전지(MFC)는 이중 성능의 잠재력 덕분에 발전하였다. MFC는 박테리아와 같은 전극 감소 생물에서 전력을 모아서 전기 에너지를 생산한다. MFC는 폐수를 연료로 사용하여 에너지를 생산하고 폐수를 정화한다. 양성자 교환막(PEM)은 양극과 음극 챔버의 분리막으로, 양성자만 효과적으로 통과할 수 있게 하는 중요한 역할을 한다. Nafion은 MFC에 상업적으로 사용되는 PEM이지만 비용, 생산 시간, 양성자 전도성 차원에서 보완할 점들이 많다. 본 리뷰 논문에는 Nafion을 대체할 수 있는 새로 개발된 PEM 몇 가지를 논의하였다. 또한, PEM, 혼합 PEM 및 복합 PEM에 기반한 MFC를 요약하고자 한다.
수소이온 교환막(PEM; Proton Exchange Membrane)은 연료전지 막-전극 복합체(MEA; Membrane-electrode Assembly)를 구성하는 핵심 소재 중 하나로서, 촉매와 함께 연료전지 성능을 결정하는 중요한 역할을 한다. 이러한 수소이온 교환막의 성능은 내부에 존재하는 수소이온 전달 통로인 수화 채널의 구조에 큰 영향을 받는 것으로 알려져 있다. 분자 동역 학(MD; Molecular Dynamics) 전산모사 기술은 이러한 소재 내부의 분자 및 원자구조를 파악하기 위한 유용한 도구로서, 수 소이온 교환막의 구조 및 특성에 관한 많은 관련 연구가 진행되고 있다. 본 총설에서는 분자동역학 전산모사 관련 연구에 대 한 동향을 정리하고, 이를 통해 어떤 구조적 특징들을 분석할 수 있는지 제시하여, 수소이온 교환막 연구자들과 분리막 연구 자들에게 분자동역학 전산모사 기술의 유용성에 대하여 소개하고자 한다.
본 연구는 직접메탄을 연료전지(Direct Methanol Fuel Cell)에 적용가능한 양이온교환막 개발에 관한 것으로 PVA/PAM/ZrP 막을 제조하여 PAM, ZrP의 함량 및 농도 변화에 따른 막의 특성을 연구하였다. PVA/PAM/ZrP 막은 PVA에 가교제인 PAM의 함량을 7∼11 wt%로 증가시켜 제조하였으며 그 각각의 막에 80℃에서 zirconyl chloride와 Phosphoric acid solution에 침적시켜 제조하였다. ZrP의 농도를 1, 2 M로 변화시켜 메탄을 투과도, 이온전도도, 함수율 및 이온교환용량을 측정하였다. PVA/PAM/ZrP 막의 메탄올 투과도는 10/-8∼l0-6 cm2/sec, 이온전도도는 10-3~10-2 S/cm 정도 나타내었으며 함수율은 0.26∼l.17 g H2O/g membrane, 이온교환용량은 2.59∼5.1 meq/g membrane의 결과를 보였는데 이는 PVA/PAM 막과 비교하여 메탄을 투과도, 이온전도도는 각각 18%, 23% 정도 증가한 것으로 관찰되었다.