Recently, research on MAX phase materials has been actively conducted. M of MAX phase is made of early transition metal element, A is A-group (IIIA or IVA) element, and X is Carbon or Nitrogen. It has the chemical formula of MnAXn-1, and is called the 211, 312, and 413 groups according to the indices(n=1,2,3). MXene material is characterized by having a layered structure of 2D structure like graphene by etching the element corresponding to A-gruop in the MAX phase. So far, MXene materials have been reported to be applied in various fields. In particular, research is being actively conducted as anode material for Li secondary batteries, electromagnetic wave shielding material, and hydrogen storage alloy material. In the pulse energization active sintering method, the surface of the powder particles is cleaned and activated more easily than the conventional electrical sintering process and material transfers at both the macro and micro level, so that a high-quality sintered body can be obtained at low temperature and fast time. In this study, the MAX phase was synthesized in a short time by using a pulse current active sintering apparatus, and the MXene material was prepared from the synthesized MAX phase and the structure was analyzed.
Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC–Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 μm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.