A resveratrol synthase (RS) gene was isolated from peanut (Arachis hypogaea, L. cv. Jinpoong) plants. This gene was placed under the control of the cauliflower mosaic virus 35S promoter (CaMV35S) and introduced into two Korean varieties of potato (Solanum tuberosum L. cvs. Jasim and Jowon) plants by Agrobacterium-mediated gene transfer. Putative transformants were screened by PCR with primers designed from CaMV 35S promoter, NOS terminator and RS gene. Most of selected transgenic potato plants showed the amplification of expected fragments by PCR of genomic DNA with gene-specific primers, while they were absent in untransformed control plants. Expression of the resveratrol synthase gene was also examined by northern blot analysis. The transformants showed a band which was lacking in the control plant, confirming that the introduced gene is transcribed into mRNA in the transformants. The strength of the band, which reflected the level of mRNA expression, differed among the individual transformants. Among the transformants obtained, the highest trans-resveratrol content in the transgenic young leaves of purple-fleshed "Jashim" was 2.11 μgg-1 fresh weight and that in the microtubers in vitro of purple fleshed "Jashim" was 8.31 μgg-1 fresh weight. This amount of resveratrol may have a positive biological effect on human health.
Resveratrol, which is both a phytoalexin with antifungal activity and a phytochemical associated with reduced cancer risk and reduced cardiovascular disease, is synthesized in a limited number of plant species including peanut. Resveratrol synthesis is catalyzed by the enzyme stilbene synthase including resveratrol synthase (RS). Resveratrol synthase gene (RS3) obtained from peanut, Arachis hypogaea, Fabaceae has been transferred into chinese foxglove, Rehmannia glutinosa by using Agrobacterium mediated transformation. RS t-DNA introduced to chinese foxglove (R. glutinosa L) by transformation and its reaction product, resveratrol-3-O-β-D-glucoside was isolated and characterized using HPLC. Also its biological effects was tested in inhibition of the lipid peroxidation of mouse LDL by glycosylated stilbenes derivatives obtained from transgenic plants. Resveratrol-3-O-β-D-glucoside isolated from transgenic R. glutinosa L. showed antimicrobial activity of the growth inhibition zone against Escherichia coli and Salmonella typhimurium. Therefore, this compound can be contributed to be useful as a phytoalexin for plant health as well as a phytochemical for human health.