검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to develop and evaluate computer vision-based algorithms that classify the road roughness index (IRI) of road specimens with known IRIs. The presented study develops and compares classifier-based and deep learning-based models that can effectively determine pavement roughness grades. METHODS : A set road specimen was developed for various IRIs by generating road profiles with matching standard deviations. In addition, five distinct features from road images, including mean, peak-to-peak, standard variation, and mean absolute deviation, were extracted to develop a classifier-based model. From parametric studies, a support vector machine (SVM) was selected. To further demonstrate that the model is more applicable to real-world problems, with a non-integer road grade, a deep-learning model was developed. The algorithm was proposed by modifying the MNIST database, and the model input parameters were determined to achieve higher precision. RESULTS : The results of the proposed algorithms indicated the potential of using computer vision-based models for classifying road surface roughness. When SVM was adopted, near 100% precision was achieved for the training data, and 98% for the test data. Although the model indicated accurate results, the model was classified based on integer IRIs, which is less practical. Alternatively, a deep-learning model, which can be applied to a non-integer road grade, indicated an accuracy of over 85%. CONCLUSIONS : In this study, both the classifier-based, and deep-learning-based models indicated high precision for estimating road surface roughness grades. However, because the proposed algorithm has only been verified against the road model with fixed integers, optimization and verification of the proposed algorithm need to be performed for a real road condition.
        4,000원