검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Red-Green-Blue (RGB) imagery techniques are useful for both forecasters and public users because they are intuitively understood, have advantageous visualization, and do not lose observational information. This study presents a novel RGB convective cloud product and its application to tropical cyclone analysis using Communication, Oceanography, and Meteorology (COMS) satellite observations. The RGB convective cloud product was developed using the brightness temperature differences between WV (6.75 μm) and IR1 (10.8 μm), and IR2 (12.0 μm) and IR1 (10.8 μm) as well as the brightness temperature in the IR1 bands of the COMS, with the threshold values estimated from the Korea Meteorological Administration (KMA) radar observations and the EUMETSAT RGB recipe. To verify the accuracy of the convective cloud RGB product, the product was applied to the center positions analysis of two typhoons in 2013. Thus, the convective cloud RGB product threshold values were estimated for WV-IR1 (−20 K to 15 K), IR1 (210 K to 300 K), and IR1-IR2 (−4 K to 2 K). The product application in typhoon analysis shows relatively low bias and root mean square errors (RMSE)s of 23 and 28 km for DANAS in 2013, and 17 and 22 km for FRANCISCO in 2013, as compared to the best tracks data from the Regional Specialized Meteorological Center (RSMC) in Tokyo. Consequently, our proposed RGB convective cloud product has the advantages of high accuracy and excellent visualization for a variety of meteorological applications.
        4,000원
        2.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        극궤도 위성(Aura)에 탑재되어 운용 중인 Ozone Monitoring Instrument (OMI)를 이용하여 동아시아 지역에 대한 등가 람버시안 반사도(Lambertian Equivalent Reflectance; LER)를 유도하였다. 본 연구의 LER 기후값(2004년 10월 -2007년 9월)은 기존 OMI 및 MODIS 결과와 다음 대기환경 변수의 관점에서 비교분석되었다. 파장(자외선, 가시광선), 지표 특성(육지, 해양), 그리고 구름 제거. 자외선 및 가시광선 파장역(328-500 nm)에서 산출된 LER은 최소 반사도뿐만 아니라 세 종류 하위 평균(1, 5, 10% 이내)으로 산출되었다. 이들 중에 10% 평균값이 OMI 결과와 가장 잘 일치하였다. 여기서 상관계수는 0.88, 평균 제곱근 오차는 1.0%. 그리고 평균 편차는 −0.3%이었다. 10% 평균값과 기존 OMI LER값은 해양에서 가시광선에 비하여 자외선 영역에서 큰(~2%) 반면에 육지에서는 작게(~1%) 나타났다. 또한 파장 및 지표 특성에 따른 LER 변동폭은 육지 및 가시광선 조건에서, 특히 만년설 및 사막 지역에서 크게 나타났다(~3%). 최소 반사도값은 해양 및 육지의 표본 지역에서 MODIS에 비하여 약 1.4% 과대 산출되었다. 이러한 원인은 고해상도 MODIS 자료에서의 효과적인 구름 제거에 있다고 분석되었다. MODIS에 대한 10% 평균값의 상대 오차는 기존 OMI 산출물에 비하여 해양에서 작았으나(−0.6%) 육지에서는 컸다(1.5%). OMI 산출물 경우에 육지에서의 작은 상대 오차는 Landsat 자료 이용한 효과적인 구름 제거에 있다고 추정되었다. 본 연구는 정지궤도 환경위성(예, GEMS) 관측을 이용한 지면반사도 산출에 기여할 것으로 기대된다.
        4,800원
        3.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전세계적으로 일사계 비교관측 기술은 급격히 발전하고 있지만 국내의 경우 일사 비교관측 표준지침을 준비하고 있는 실정이다. 본 연구에서는 국내 기상 및 지리적 환경을 고려하여 전천일사계의 비교관측 절차를 정립하였다. 2017년 아시아 지역 복사센터에서는 국가표준 일사계들의 비교관측을 통해 일사계 보정이 이루어졌다. 이때 검교정된 기상청 기준기를 이용하여 기상청의 부기준기들과 강릉원주대의 전천일사계의 비교관측 및 검교정이 수행되었다. 비교 관측 및 검교정은 2018년 10월 24일부터 10월 25일(2일)까지 수행되었으며 비교관측자료를 분석하여 오차분석 및 검교정을 수행하였다. 보정전 비교관측에 따르면, 전천일사계 부기준기들(B-J)은 기상청 전천일사계 기준기(A)를 기준으로 ±12.0Wm−2 이하의 편차가 나타났고 B와 I 전천일사계는 ±4.0Wm−2 미만의 작은 편차를 보였다. 태양 복사량이 450 Wm−2 이상인 자료들을 이용하여 감도정수의 보정값을 계산하였다. B와 I 일사계(오차 ±0.5Wm−2 이하)를 제외한 일사 계들(오차 ±5Wm−2 이상)은 0.08-0.16 μV (Wm−2)−1 감도정수 변경이 적용되었다. C 일사계는 감도정수의 변화가 가장 컸으며 감도정수는 −0.16 μV (Wm−2)−1으로 보정하였다. 비교관측에 참가한 9종의 기준기 및 부기준기들의 최종 관측오차는 0.06Wm−2 (0.08%) 이하였으며 허용범위인 ±1.00% (±4.50Wm−2 )로 검교정되었다.
        4,600원
        4.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In general, the design concepts of earth-observation satellites are established depending on the purposes of utilization such as commercial imagery business, public services, scientific research. Nowadays, The lightweight satellite structure is considered as an effective method for developing the earth-observation satellite. This paper introduces a design concept of the lightweight satellite structure for the constellation of earth-observation satellites. The modular design of the satellite structure is applied to save manpower and shorten the AIT process, in addition, a propulsion module is adopted to allow a hydrazine propulsion system to be installed on the satellite. The finite element method is used for the structural analysis of the satellite. The axial and lateral frequency requirements of satellite structure were verified by mode analysis. also, the margin of safety of satellite structure parts were satisfied with design requirements. As a result, the structural integrity of the suggested satellite structure is verified by mode analysis and static analysis.
        4,000원
        6.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaïmeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.
        7.
        2015.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.
        8.
        2015.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of “action”, and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.