검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 유해 해양생물의 고밀도 출현을 조기에 탐지하기 위한 시스템 구축이다. 수중영상 기반 객체탐지 모델의 정 확도와 이미지 처리속도를 고려하여 실시간 적용에 적합한 YOLOv8m을 선정하였다. 영상 데이터를 해양생물 탐지 알고리즘에 적용한 결 과 다수의 어류 및 간헐적인 해파리 출현을 탐지하였다. 학습 모델의 검증 데이터에 대한 평균 정밀도는 0.931, 재현율은 0.881, mAP는 0.948로 산출되었다. 또한, 각 클래스별 mAP는 어류 0.970, 해파리 0.970, 살파 0.910로 모든 클래스에서 0.9(90%) 이상으로 산출되어 우수한 성능을 확인하였다. 과학어탐 시스템을 통해 객체의 탐지 범위와 시간에 따른 수중 객체탐지 결과를 확인할 수 있었으며 에코적분 격자 평균을 적용하여 시공간축으로 스무딩 처리된 결과를 얻을 수 있었다. 또한, 평균체적후방산란강도 값이 분석 도메인 내 객체탐지 여부에 따른 변동성을 반영하는 것을 확인할 수 있었다. 수중영상 기반 객체(해양생물)탐지 알고리즘, 환경조건(야간 포함)에 따른 수중영상 보정 기법, 과학어탐 시스템 기반의 정량화된 탐지결과를 제시하고 향후 다양한 사용처에서의 활용 가능성을 토의하였다.
        4,600원