검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reactive Ion Etching (RIE) and wet etching are employed in existing texturing processes to fabricate solar cells. Laser etching is used for particular purposes such as selective etching for grooves. However, such processes require a higher level of cost and longer processing time and those factors affect the unit cost of each process of fabricating solar cells. As a way to reduce the unit cost of this process of making solar cells, an atmospheric plasma source will be employed in this study for the texturing of crystalline silicon wafers. In this study, we produced the atmospheric plasma source and examined its basic properties. Then, using the prepared atmospheric plasma source, we performed the texturing process of crystalline silicon wafers. The results obtained from texturing processes employing the atmospheric plasma source and employing RIE were examined and compared with each other. The average reflectance of the specimens obtained from the atmospheric plasma texturing process was 7.88 %, while that of specimens obtained from the texturing process employing RIE was 8.04 %. Surface morphologies of textured wafers were examined and measured through Scanning Electron Microscopy (SEM) and similar shapes of reactive ion etched wafers were found. The Power Conversion Efficiencies (PCE) of the solar cells manufactured through each process were 16.97 % (atmospheric plasma texturing) and 16.29% (RIE texturing).
        4,000원
        3.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar ares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton ux of energy of ≥ 60 Mev. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton ux of energy (≥ 60Mev). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.
        4,000원
        4.
        2010.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate how plasma structures in the solar chromosphere and corona can extend to altitudes much above hydrostatic scale heights from the solar surface even under the force of gravity. Using a simple modified form of equation of motion in the vertical direction, we argue that there are two extreme ways of non-hydrostatic support: dynamical support and magnetic support. If the vertical acceleration is downward and its magnitude is a significant fraction of gravitational acceleration, non-hydrostatic support is dynamical in nature. Otherwise non-hydrostatic support is static, and magnetic support by horizontal magnetic fields is the only other possibility. We describe what kind of observations are needed in the clarification of the nature of non-hydrostatic support. Observations available so far seem to indicate that spicules in the quiet regions and dynamic fibrils in active regions are dynamically supported whereas the general chromosphere as well as prorninences is magnetically supported. Moreover, it appears that magnetic support is required for plasma in some coronal loops as well. We suspect that the identification of a coronal loop with a simple magnetic flux tube might be wrong in this regard.
        4,000원