검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 유해 해양생물의 고밀도 출현을 조기에 탐지하기 위한 시스템 구축이다. 수중영상 기반 객체탐지 모델의 정 확도와 이미지 처리속도를 고려하여 실시간 적용에 적합한 YOLOv8m을 선정하였다. 영상 데이터를 해양생물 탐지 알고리즘에 적용한 결 과 다수의 어류 및 간헐적인 해파리 출현을 탐지하였다. 학습 모델의 검증 데이터에 대한 평균 정밀도는 0.931, 재현율은 0.881, mAP는 0.948로 산출되었다. 또한, 각 클래스별 mAP는 어류 0.970, 해파리 0.970, 살파 0.910로 모든 클래스에서 0.9(90%) 이상으로 산출되어 우수한 성능을 확인하였다. 과학어탐 시스템을 통해 객체의 탐지 범위와 시간에 따른 수중 객체탐지 결과를 확인할 수 있었으며 에코적분 격자 평균을 적용하여 시공간축으로 스무딩 처리된 결과를 얻을 수 있었다. 또한, 평균체적후방산란강도 값이 분석 도메인 내 객체탐지 여부에 따른 변동성을 반영하는 것을 확인할 수 있었다. 수중영상 기반 객체(해양생물)탐지 알고리즘, 환경조건(야간 포함)에 따른 수중영상 보정 기법, 과학어탐 시스템 기반의 정량화된 탐지결과를 제시하고 향후 다양한 사용처에서의 활용 가능성을 토의하였다.
        4,600원
        2.
        2020.03 KCI 등재 서비스 종료(열람 제한)
        This research is a case study of underwater object tracking based on real-time recurrent regression networks (Re3). Re3 has the concept of generic object tracking. Because of these characteristics, it is very effective to apply this model to unclear underwater sonar images. The model also an pursues object tracking method, thus it solves the problem of calculating load that may be limited when object detection models are used, unlike the tracking models. The model is also highly intuitive, so it has excellent continuity of tracking even if the object being tracked temporarily becomes partially occluded or faded. There are 4 types of the dataset using multi-beam sonar images: including (a) dummy object floated at the testbed; (b) dummy object settled at the bottom of the sea; (c) tire object settled at the bottom of the testbed; (d) multi-objects settled at the bottom of the testbed. For this study, the experiments were conducted to obtain underwater sonar images from the sea and underwater testbed, and the validity of using noisy underwater sonar images was tested to be able to track objects robustly.
        3.
        2012.05 서비스 종료(열람 제한)
        This study introduces an algorithm for geometric distortion corrections in sonar images. The proposed algorithm mainly consists of two stages. At the first stage, the raw images are processed with median filter and Frost filter for noise reduction and intensity enhancement. In the last stage, the geometric distortion correction is conducted using angular information given by a gyro sensor. The algorithm was successfully applied on raw sonar data collected on a pier survey.