This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.
This paper presents relative navigation using intermittent laser-based measurement data for spacecraft flying formation that consist of two spacecrafts; namely, chief and deputy spacecrafts. The measurement data consists of the relative distance measured by a femtosecond laser, and the relative angles between the two spacecrafts. The filtering algorithms used for the relative navigation are the extended Kalman filter (EKF), unscented Kalman filter (UKF), and least squares recursive filter (LSRF). Numerical simulations reveal that the relative navigation performances of the EKF- and UKF-based relative navigation algorithms decrease in accuracy as the measurement outage period increases. However, the relative navigation performance of the UKF-based algorithm is 95 % more accurate than that of the EKF-based algorithm when the measurement outage period is 80 sec. Although the relative navigation performance of the LSRF-based relative navigation algorithm is 94 % and 370 % less accurate than those of the EKF- and UKF-based navigation algorithms, respectively, when the measurement outage period is 5 sec; the navigation error varies within a range of 4 %, even though the measurement outage period is increased. The results of this study can be applied to the design of a relative navigation strategy using the developed algorithms with laser-based measurements for spacecraft formation flying.
This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.
In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases’ optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoap¬sis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements’ variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea’s future lunar mission, especially for developing flight dynamics subsystem.
The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.