검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        5.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we nd that all blobs except one show irregular \zigzag" trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 kms􀀀1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with di erent speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and uid dynamic experiments. We nd that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15{3.0) from uid dynamic experiments of blu spheres, while they are higher than those (0.15{0.25) from MHD simulations of cylindrical shapes. We thus nd that blobs formed in a post-CME CS undergo kinematic oscillations caused by uid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a blu spherical shape with the background plasma in the post-CME CS.
        4,000원
        7.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Observations of line of sight (LOS) Doppler velocity and non-thermal line width in the o -limb solar corona are often used for investigating the Alfven wave signatures in the corona. In this study, we compare LOS Doppler velocities and non-thermal line widths obtained simultaneously from two di erent instruments, Coronal Multichannel Polarimeter (CoMP) and Hinode/EUV Imaging Spectrometer (EIS), on various o -limb coronal regions: aring and quiescent active regions, equatorial quiet region, and polar prominence and plume regions observed in 2012{2014. CoMP provides the polarization at the Fe xiii 10747 A coronal forbidden lines which allows their spectral line intensity, LOS Doppler velocity, and line width to be measured with a low spectral resolution of 1.2 A in 2-D o limb corona between 1.05 and 1.40 RSun, while Hinode/EIS gives us the EUV spectral information with a high spectral resolution (0.025 A) in a limited eld of view raster scan. In order to compare them, we make pseudo raster scan CoMP maps using information of each EIS scan slit time and position. We compare the CoMP and EIS spectroscopic maps by visual inspection, and examine their pixel to pixel correlations and percentages of pixel numbers satisfying the condition that the di erences between CoMP and EIS spectroscopic quantities are within the EIS measurement accuracy: 3 kms􀀀1 for LOS Doppler velocity and 9 kms􀀀1 for non-thermal width. The main results are summarized as follows. By comparing CoMP and EIS Doppler velocity distributions, we nd that they are consistent with each other overall in the active regions and equatorial quiet region (0.25  CC  0.7), while they are partially similar to each other in the overlying loops of prominences and near the bottom of the polar plume (0.02  CC  0.18). CoMP Doppler velocities are consistent with the EIS ones within the EIS measurement accuracy in most regions ( 87% of pixels) except for the polar region (45% of pixels). We nd that CoMP and EIS non-thermal width distributions are similar overall in the active regions (0.06  CC  0.61), while they seem to be di erent in the others (􀀀0:1  CC  0.00). CoMP non-thermal widths are similar to EIS ones within the EIS measurement accuracy in a quiescent active region (79% of pixels), while they do not match in the other regions ( 61% of pixels); the CoMP observations tend to underestimate the widths by about 20% to 40% compared to the EIS ones. Our results demonstrate that CoMP observations can provide reliable 2-D LOS Doppler velocity distributions on active regions and might provide their non-thermal width distributions.
        4,300원
        9.
        2020.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).
        4,300원