PURPOSES : The purposes of this study are to identify appropriate numbers of drivers for different time periods by analyzing the service times of the Special Transportation System and to shorten the waiting time to within 15 minutes.
METHODS : In this study, the service time is divided into the call connection time (At), dispatch time after reception (Bt), vehicle arrival time after dispatch (Ct), and vehicle boarding time (Dt), and the annual average value for each time zone is calculated by analyzing the dispatch system database. Furthermore, the number of drivers working in each time period is extracted and the appropriate number of drivers for ensuring the dispatch waiting time remains within 15 minutes is determined.
RESULTS : It is more accurate to interpret the decrease in dispatches during lunchtime as a decrease in the number of operational vehicles owing to the drivers' lunchtimes rather than a decrease in demand. During lunchtime (as in previous studies) the number of operations decreases, but the average dispatch time (Bt) greatly increases to 22:42; thus, it cannot be seen as a decrease in dispatch demand. The number of operations during lunchtime is proportional to the number of drivers on duty. The number of drivers on duty is inversely proportional to the average dispatch time. If the number of drivers is increased by 11.6%, the average waiting time can be reduced to within 15 minutes.
CONCLUSIONS : To resolve delayed call connection issues, we will introduce an artificial intelligence (AI) call center. During the hours of 7 PM to 6 AM, calls will mainly be handled by AI and the counseling personnel will switch to daytime work. We will also increase the number of drivers by 11.6% to ensure that the dispatch time does not exceed an average of 15 minutes after receiving a call. In particular, we will generate the work schedule such that more than 131 drivers work in the 12:00 to 13:00 hours during lunch time to improve the situation where users have to wait for a long time. To do this, we will overlap the work hours for 2 hours in Jeonju and 1 hour in other cities and counties. We have to increase the number of night shift workers from seven to 15 so that all cities and counties can operate vehicles 24 hours a day, 365 days a year.
PURPOSES : The purpose of this study is to analyze the improvement effect of the distributed arrangement of a vehicle base, which is a policy on maximizing the cost efficiency and timely/spatial effectiveness of special transportation system (STS) operation for improving the mobility of the elderly and disabled.
METHODS: (1) The characteristics of the current distributed arrangement of an STS vehicle base in an urban area was analyzed. (2) The quantitative improvement effect was derived by analyzing the actual measurement of operation during STS distributed arrangement test operation in Namyangju city.
RESULTS : (1) Cities with large area and populations, which have a distributed living zone in an urban area, have a higher distributed arrangement ratio than urbanized smaller cities. (2) Based on the effectiveness analysis of the STS distributed arrangement test operation, the total travel time and distance decreased.
CONCLUSIONS : (1) For the STS distributed arrangement, parking spots, driver standby, and restrooms must be prepared. Facilitating STS as a public institution consignment makes it easier to secure a vehicle base and management by utilizing public facilities. (2) Implementing the STS distributed arrangement of vehicle base allows for efficient response to demand through effective management of vehicles, which eventually decreases travel time and distance. This decrease not only reduces management costs but also increases supply expansion without an increase in the number of vehicles.