검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CTA ester bonds in TG molecules were not attacked by pancreatic lipase and lipases produced by microbes such as Candida cylindracea, Chromobacterium viscosum, Geotricum candidium, Pseudomonas fluorescens, Rhizophus delemar, R. arrhizus and Mucor miehei. An aliquot of total TG of all the seed oils and each TG fraction of the oils collected from HPLC runs were deuterated prior to partial hydrolysis with Grignard reagent, because CTA molecule was destroyed with treatment of Grignard reagent. Deuterated TG (dTG) was hydrolyzed partially to a mixture of deuterated diacylglycerols (dDG), which were subsequently reacted with (S)-(+)-1-(1-naphthyl)ethyl isocyanate to derivatize into dDG-NEUs. Purified dDG-NEUs were resolved into 1, 3-, 1, 2- and 2, 3-dDG-NEU on silica columns in tandem of HPLC using a solvent of 0.4% propan-1-o1 (containing 2% water)-hexane. An aliquot of each dDG-NEU fraction was hydrolyzed and (fatty acid-PFB ester). These derivatives showed a diagnostic carboxylate ion, (M-1)-, as parent peak and a minor peak at m/z 196 (PFB-CH3)- on NICI mass spectra. In the mass spectra of the fatty acid-PFB esters of dTGs derived from the seed oils of T. kilirowii and M. charantia, peaks at m/z 285, 287, 289 and 317 were observed, which corresponded to (M-1)- of deuterized oleic acid (d2-C18:0), linoleic acid (d4-C18:0), punicic acid (d6-C18:0) and eicosamonoenoic acid (d2-C20:0), respectively. Fatty acid compositions of deuterized total TG of each oil measured by relative intensities of (M-1)- ion peaks were similar with those of intact TG of the oils by GLC. The composition of fatty acid-PFB esters of total dTG derived from the seed oils of T. kilirowii are as follows; C16:0, 4.6 mole % (4.8 mole %, intact TG by GLC), C18:0, 3.0 mole % (3.1 mole %), d2C18:0, 11.9 mole % (12.5 mole %, sum of C18:1Ω9 and C18:1Ω7), d4-C18:0, 39.3 mole % (38.9 mole %, sum of C18:2Ω6 and its isomer), d6-C18:0, 41.1 mole % (40.5 mole %, sum of C18:3 9c,11t,13c, C18:3 9c,11t,13r and C18:3 9t,11t,13c), d2-C20:0, 0.1 mole % (0.2 mole % of C20:1Ω9). In total dTG derived from the seed oils of M. charantia, the fatty acid components are C16:0, 1.5 mole % (1.8 mole %, intact TG by GLC), C18:0, 12.0 mole % (12.3 mole %), d2-C18:0, 16.9 mole % (17.4 mole %, sum of C18:1Ω9), d4-C18:0, 11.0 mole % (10.6 mole %, sum of C18:2Ω6), d6-C18:0, 58.6 mole % (57.5 mole %, sum of C18:3 9c,11t,13t and C18:3 9c,11t,13c). In the case of Aleurites fordii, C16:0; 2.2 mole % (2.4 mole %, intact TG by GLC), C18:0; 1.7 mole % (1.7 mole %), d2-C18:0; 5.5 mole % (5.4 mole %, sum of C18:1Ω9), d4-C18:0 ; 8.3 mole % (8.5 mole %, sum of C18:2Ω6), d6-C18:0; 82.0 mole % (81.2 mole %, sum of C18:3 9c,11t,13t and C18:3 9c,11t,13c). In the stereospecific analysis of fatty acid distribution in the TG species of the seed oils of T. kilirowii, C18:3 9c,11t,13r and C18:2Ω6 were mainly located at sn-2 and sn-3 position, while saturated acids were usually present at sn-1 position. And the major molecular species of (C18:2Ω6)(C18:3 9c,11t,13c)2 and (C18:1Ω9)(C18:2Ω6)(C18:3 9c,11t,13c) were predominantly composed of the stereoisomer of sn-1-C18:2Ω6, <..
        5,400원
        2.
        1997.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Triacylglycerols of the seeds of Ginkgo biloba have been resolved by high-performace liquid chromatography(HPLC in the silver-ion and reverse-phase modes. The fatty acids were identified by a combination of capillary gas chromatography and gas-chromatography /mass spectrometry as the methyl and /or picolinyl ester. The main components are C18:2Ω6(39.0mol%), C18:1Ω7(asclepic acid 21.5mol%), and C18:1Ω9(oleic acid, 13.8mol%). Considerable amounts of unusual acid such as C20:3δ5,11,14 (5.7mol%), C18:2δ5,9(2.8mol%), and C18:3δ5,9,12(1.6mol%), were checked. In addition, an anteiso-branched fatty acid, 14-methylhexadecanoic acid, was also present as a minor component(0.9 mol%). The triacylglycerols were separated into 17 fractions by reverse-phase HPLC, and the fractionation was achieved according to the partition numnber(PN) in which a δ5-non methylene interrupted double bond(5-NMDB) showed different behaviour from a methylene interrupted double bond in a molecule with a given cahinlength. Silver-ion HPLC exhibited excellent resolution in which fractions(23 fractions) were resolved on the basis of the number and configuration of double bonds. In this instance, the strength of interaction of a δ5-NMDB system with silver ions seemed to be weaker than a methylene interrupted double bond system. The principal triacylglycerol species are as follows ; (C18:2Ω6)2/C18:1Ω7, C18:1Ω9/C18:1Ω7/C18:2Ω6, (C18:1Ω7)2/C18:2Ω6, C16:1Ω7/C18:1Ω9/C20:3δ5,11,14, C16:1Ω7/C18:1Ω7/C20:3δ5,11,14, C18:1Ω9/C18:1Ω7/C18:2Ω6, C18:1Ω9/C18:2δ5,5/C20:3δ5,11,14, (C18:1Ω7)2/C18:2Ω6 and (C18:1Ω9)2/C18:2Ω6, while simple triacylglycerols without C18:2Ω6)3 were not present. Stereospecific analysis showed that fatty acids with δ5-NMDB system and saturated chains were predominantly located at the site of sn-3 carbon of glycerol backbones. It is evident that there is asymmetry in the distribution of fatty acids in the TG molecules of Ginkgo nut oils.
        4,900원