검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.
        4,000원
        2.
        2015.10 서비스 종료(열람 제한)
        This research investigated the effects of matrix strength on the direct tensile behavior of high performance hybrid fiber reinforced cementitious composites (HPHFRCCs) at high strain rates. 3 different type matrixes were used (56 MPa, 81 MPa and 180 MPa). And macro fiber was long hooked fiber (H, =0.3 mm,=30 mm) and micro fiber was short smooth fiber (S, =0.2 mm,  =13 mm). The volume content of macro fibers was 1.0% and the volume content of micro fibers was 1.0%. The high matrix strength clearly increased the tensile strength and peak toughness of HPHFRCCs even at high strain rates (74 ~ 161 /sec).
        3.
        2014.10 서비스 종료(열람 제한)
        This research investigated the effects of adding micro fibers on the direct tensile behavior of ultra-high-performance hybrid-fiber-reinforced concrete (UHPHFRC) at high strain rates. Macro fiber was long smooth fiber (LS, Df=0.3mm, Lf=30mm) and micro fiber was short smooth fiber (SS, Df=0.2mm, Lf=13mm). The volume content of macro fibers was 1.0% and the volume content of micro fibers varied between 0.0 and 1.0%. The addition of micro fibers clearly increased the tensile strength of UHPHFRCs even at high strain rates.