An entomopathogenic bacteria, Xenorhabdus nematophila (Xn) and Photorhabdus temperata subsp temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insect. Benzylideneacetone (BZA), PY, cPY, Ac-FGV, indole, 2-oxindole and 3-(4-hydroxyphenylpropionic) acid (PHPP) were compounds derived from the bacterial. Their immunosuppressive activities have been induced by inhibitory activity against eicosanoid biosynthesis and used to develop an additive to enhance control efficacy of other commercial microbial insecticides. This study investigated any cytotoxicity of their culture broth and bacterial metabolites on Spodoptera exigua hemocyte. When Xn or Ptt (<100 cells per larva) were injected to larval of S. exigua, the bacteria increased in density with incubation time, while the insent hemocyte numbers significantly and the resulting culture broths were sampled for analysis of their cytotoxicity against S. exigua hemocytes. In addition, the sequential culture broth samples were analyzed in active component chemicals using a reverse phase HPLC. Finally, seven bacterial metabolites were analyzed in relative cytotoxicity against S. exigua. These results suggest that BZA is a major cytotoxic compound.
Two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata, are known to be potent against the diamondback moth, Plutella xylostella, when the bacteria are injected into the hemocoel. This study investigated any pathogenic effect of their culture broth on P. xylostella by oral administration. Only culture broth of both bacterial species did not give enough pathogenic effects by the oral administration. However, when the culture broth was orally treated together with Bacillus thuringiensis (Bt), both cell-free culture broth significantly enhanced Bt pathogenicity against the 3rd instar larvae of P. xylostella. The culture broth was then fractionated into hexane, ethyl acetate, and aqueous extracts. Most synergistic effect on Bt pathogenicity was found in ethyl acetate extracts of both bacterial species. Thin layer chromatography of these extracts clearly showed that ethyl acetate extracts of both bacterial culture broths possessed metabolites that were different to those of hexane and aqueous extracts. These results suggest that the both entomopathogenic bacteria produce and secrete different factors to give significant synergistic effect on Bt pathogenicity.