This article reported a simple method for preparing diamond/SiC composites by polymer impregnation and pyrolysis (PIP) process, and the advantages of this method were discussed. Only diamond and SiC were contained in the diamond/SiC composite prepared by PIP process, and the diamond particles remained thermally stable up until the pyrolysis temperature was increased to 1600 °C. The pyrolysis temperature has a significant impact on the thermal conductivity and dielectric properties of composites. The thermal conductivity of the composite reaches a maximum value of 63.9 W/mK when the pyrolysis temperature is 1600 °C, and the minimum values of the real and imaginary part of the complex permittivity are 19.5 and 0.77, respectively. The PIP process is a quick and easy method to prepare diamond/SiC composites without needing expensive equipment, and it is of importance for promoting its application in the field of electric packaging substrate.
Modified pitch A (MPA) and modified pitch B (MPB) were prepared by oxidative polymerization and thermal polycondensation reaction with refined pitch as the raw material, respectively. The toluene soluble components (TS-1 and TS-2) were obtained by solvent extraction from MPA and MPB, separately. The Flynn-Wall-Ozawa method and Kissinger-Akahira- Sunose method were used to calculate the pyrolysis activation energy of TS. The Satava- Sestak method was used to investigate the pyrolysis kinetic parameters of TS. Moreover, the optical microstructure of the thermal conversion products (TS-1-P and TS-2-P) by calcination shows that TS-1-P has more contents of mosaic structure and lower contents of fine fiber structure than TS-2-P. The research result obtained by a combination of X-ray diffraction and the curve-fitting method revealed that the ratios of ordered carbon crystallite (Ig) in TS-1-P and TS-2-P were 0.3793 and 0.4417, respectively. The distributions of carbon crystallite on TS-1-P and TS-2-P were calculated by Raman spectrum and curve-fitting analysis. They show that the thermal conversion product of TS-2 has a better graphite crystallite structure than TS-1.