본 논문에서는 구조물의 좌굴 온도와 좌굴 형상을 제어하는 새로운 크기 최적화 방법에 대해서 소개한다. 구조적 안정성 관점에서 구조물의 좌굴 온도와 좌굴 형상을 예측하는 것은 중요한 주제 중 하나이다. 이를 공학적인 직관을 통해 예측하고 최적화된 구조 설계 를 하는 것은 너무나 어려운 과제이다. 이러한 한계점을 해결하기 위해 본 연구에서는 유한요소 시뮬레이션과 치수 최적 설계 방식의 조합을 제안한다. 구조물의 좌굴 온도와 좌굴 형상이 구조물의 두께에 영향을 받는다는 생각에서 착안해 설계 변수를 구조물의 노드 의 두께 값으로 설정했다. 좌굴 온도 값과 좌굴 형상을 목적 함수로 정해진 부피 값을 제약 조건으로 두었다. 치수 최적 설계를 통해 원 하는 좌굴 온도와 좌굴 형상을 유도하기 위한 최적의 두께 분포를 결정할 수 있다. 제안된 치수 최적 설계의 타당성은 본 논문의 다양 한 직사각형 복합 구조물 예제들을 사용해서 검증하였다.
As aluminum foam has the most superior absorption of impact energy, this material has been used at automobile and airplane. If aluminum foam is used by jointing bolt and nut, it can be broken. Therefore, it is more effective to bond aluminum foam and other materials by adhesive. In this study, the fatigue fracture simulation through ANSYS program is carried out on the aluminum foam specimen bonded with adhesive as the type of DCB Mode Ⅲ. There are four kinds of specimens with the types of DCB Mode Ⅲ in this study. The thicknesses of four specimens are 35mm, 45mm, 55mm and 65mm. In cases of specimen thicknesses of 35mm, 45mm, 55mm and 65mm, the maximum loads are shown as ±0.2kN, ±0.55kN, ±1kN and ±1.2kN respectively. As the specimen thickness increases, the maximum loads increase. The results of fatigue experiment as specimen thickness of 55mm can be shown to approach the simulation results by confirming the simulation results of this study. So, The simulation data can be applied in order to investigate the mechanical property at DCB specimen with the type of Mode Ⅲ.