The International Space Station (ISS) orbits the Earth within the inner radiation belt, where high-energy protons are produced by collisions of cosmic rays to the upper atmosphere. About 6 astronauts stay in the ISS for a long period, and it should be important to monitor and assess the radiation environment in the ISS. The tissue equivalent proportional counter (TEPC) is an instrument to measure the impact of radiation on the human tissue. KASI is developing a TEPC as a candidate payload of the ISS. Before the detailed design of the TEPC, we performed simulations to test whether our conceptual design of the TEPC will work propertly in the ISS and to predict its performance. The simulations estimated that the TEPC will measure the dose equivalent of about 1:1 mSv during a day in the ISS, which is consistent with previous measurements.
We develop the tissue-equivalent proportional counter (TEPC) type’s space radiation dosimeter to measure in-situ aviation radiation. That was originally developed as a payload of small satellite in the low-earth orbit. This dosimeter is based on a TEPC. It is made of an A-150 tissue-equivalent plastic shell of an internal diameter of 6 cm and a thickness of 0.3 cm. TEPC is filled with pure propane at 13.9 torrs to simulate a cell diameter of 2 μm. And the associated portable and low power electronics are also implemented. The verification experiments have been performed by the calibration experiments at ground level and compared with Liulin observation at aircraft altitude during the flight between Incheon airport (ICN) and John F. Kennedy airport (JFK). We found that the TEPC dosimeter can be used as a monitor for space radiation dosimeter at aviation altitude based on the verification with Liulin observation.
Tissue equivalent proportional counter (TEPC) can measure the Linear Energy Transfer (LET) spectrum and calculate the equivalent dose for the complicated radiation field in space. In this paper, we developed and characterized a TEPC for radiation monitoring in International Space Station (ISS). The prototype TEPC which can simulate a 2 μm of the site diameter for micro-dosimetry has been tested with a standard alpha source (241Am, 5.5 MeV). Also, the calibration of the TEPC was performed by the 252Cf neutron standard source in Korea Research Institute of Standards and Science (KRISS). The determined calibration factor was kf = 3.59×10-7 mSv/R.