PURPOSES : Despite the availability of larger traffic data and more advanced data collection methods, the problem of missing data is yet to be solved. Imputing missing data to ensure data quality and reliability of statistics has always been challenging. Missing data are imputed via several existing methods, such as autoregressive integrated moving average, exponential smoothing, and interpolation. However, these methods are complicated and results in significant errors.
METHODS : A deep-learning method was applied in this study to impute traffic volume data of the South Korean national highway. Traffic data were trained using the long short-term memory method, which is a suitable deep-learning method for time series analysis.
RESULTS : Three cases were proposed to estimate the traffic volume. In the first case, which represented the general conditions, the mean absolute percentage error (MAPE) was 12.7%. The second estimation case, which was based on the opposite traffic flow, exhibited a MAPE of 17%~18%. The third case, which was estimated using adjacent-section data, had a MAPE of 18.2%. CONCLUSIONS : Deep learning may be a suitable alternative data imputation method based on the limited site and data. However, its application depends on the specific situation. Furthermore, deep-learning models can be improved using an ensemble method, batch-size, or through model-structure optimization.
본 연구에서는 결측된 일교통량의 대체를 위하여 교통공학에서 많이 활용되고 있는 기존의 선형내삽법에 공간상관성 기법을 고려한 새로운 선형내삽법을 제안하였다. 일교통량과 같이 시간적 특성을 지닌 자료를 공간위에 배치하여 공간적 상관성을 고려할 수 있도록 하였다. 공간상관성을 측정하기 위하여 일교통량의 순환성을 감안하여 같은 주의 요일간 상관성과 주별 같은 요일의 상관성을 나타내는 지표로서 Moran Index를 사용하였다. 실제 분석을 위하여 한국건설기술연구원에서 제공한 2004년 11월의 28일간의 일교통량 자료를 4×7 격자 형태로 배치하여 일별 교통량자료를 공간화 시켜 공간 상관성을 살펴보았으며, 여러 가지 통계적 지표를 통하여 공간 선형내삽법의 우수성을 확인하였다.