PURPOSES: The demand for extending national highways is increasing, but traffic monitoring is hindered because of resource limitations. Hence, this study classified highway segments into 5 types to improve the efficiency of short-term traffic count planning. METHODS : The traffic volume trends of 880 highway segments were classified through R-squared and linear regression analyses; the steadiness of traffic volume trends was evaluated through coefficient of variance (COV), and the normality of the data were determined through the Shapiro-Wilk W-test. RESULTS : Of the 880 segments, 574 segments had relatively low COV and were classified as type 1 segments, and 123 and 64 segments with increasing and decreasing traffic volume trends were classified as type 2 and type 3 segments, respectively; 80 segments that failed the normality test were classified as type 4, and the remaining 39 were classified as type 5 segments. CONCLUSIONS : A theoretical basis for biennial count planning was established. Biennial count is recommended for types 1~4 because their mean absolute percentage errors (MAPEs) are approximately 10%. For type 5 (MAPE =19.26%), the conventional annual count can be continued. The results of this analysis can reduce the traffic monitoring budget.
PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS: This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City’s O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.