An elliptic blending Reynolds stress transport equation model for Newtonian fluids has been extended to predict polymer-induced drag reduction FENE-P fluids. The conformation tensor equation which is related to the polymer stress is adopted from the model form of Resende et al., and the models of redistribution and dissipation rate terms for the Reynolds stress transport equation are considered by the elliptic blending equation. Also, the new model terms for viscoelastic turbulent transport and viscoelastic dissipation in the Reynolds stress transport equation are introduced to consider the polymer additives effect. The prediction results are directly compared to the DNS data to assess the performance of the present model predictions.
Nodal transport methods are proposed for solving the simplified even-parity neutron transport (SEP) equation. These new methods are attributed to the success of existing nodal diffusion methods such as the Polynomial Expansion Nodal and the Analytic Function Expansion Nodal Methods, which are known to be very effective for solving the neutron diffusion equation. Numerical results show that the simplified even-parity transport equation is a valid approximation to the transport equation and that the two nodal methods developed in this study also work for the SEP transport equation, without conflict. Since accuracy of methods is easily increased by adding node unknowns, the proposed methods will be effective for coarse mesh calculation and this will also lead to computation efficiency.
An algebraic model for turbulent heat fluxes is proposed on the basis of the elliptic blending equation. The algebraic model satisfies the temperature-pressure gradient correlation characteristics of near-wall region and the flow center region far away from the wall. That is, the turbulent heat flux conditions for both regions are connected by the solution of the elliptic blending equation. The predictions of turbulent heat transfer in a plane channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. Also, the rotating channel flow with constant wall temperature difference is considered to test the applicability of the model. The prediction results show that the distributions of the turbulent heat fluxes and mean temperature are well captured by the present algebraic heat flux model.
오염물질의 이동 현상을 모의하기 위하여, 감쇠항이 있는 3차원 이송-확산 방정식의 수치모형이 개발되었다. 개발된 모형은 유한차분 모형으로서 시간단계의 가중치 α를 포함하는 음해법(implicit finite difference method)과, 반복법인 Gauss-Seidel SOR(successive over relaxation)이 사용되었다. 모형은 보다 단순화된 가정 하에서 존재하는 두 가지의 해석적인 해와 비교되었다. 그 결과 Peclet number가 5~20 이하에서는 수치 분산의 영향이 크지 않았고 작은 오차 범위 내에서 해석적인 해와 동일하였다. 또한 가중치 α의 변화에 대한 모형의 거동은 Crank-Nicolson 모형(α=0.5)이 fully-implicit 모형(α= 1)보다 해석적인 해에 접근함을 보여주었다. 모형의 검증과 실효성 제고를 위하여, mass balance를 검토하였다. 즉, 이송, 확산 및 감쇠항 각각에 대한 질량 이동을 산출하였으며, 그 결과 질량 이동의 계산 오차는 약 3% 이내였다. 본 모형은 감쇠 과정이 수반되는 3차원 이송-확산의 농도분포와 질량이동을 산출할 수 있으며 다양한 경계 조건을 설정함으로서 현장조건을 반영할 수 있다. 그러나 본 모형은 고정 격자를 기반으로 하는 유한차분 모형이므로 Peclet number가 비교적 작게 나타날 수 있는 토양 및 지하수계의 오염물질 이동 등의 문제에서 유용하게 적용될 수 있을 것으로 사료된다.
프랙탈 이송확산방정식은 정수 차수의 미분연산자로 구성된 고전적인 이송확산방정식과 비교하여 프랙탈 차수의 미분연산자로 구성된 보다 상위개념의 방정식으로써 정의된다. 지금까지의 프랙탈 이송확산방정식은 추계학적인 기법을 동원하여 푸리에-라플라스 공간에서 주로 해석되었으나, 본 연구에서는 실제 공간에서 유한차분개념을 도입하여 보다 직접적으로 하천에서의 오염물 이송확산에 관한 지배방정식을 유도하였다. 이러한 개념의 유도방법은 프랙탈 차수 및 관련 확산계수의 물리