간행물

한국공간구조학회지 KCI 등재 JOURNAL OF THE KOREAN ASSOCIATION FOR AND SPATIAL STRUCTURES

권호리스트/논문검색
이 간행물 논문 검색

권호

제23권 제1호 (2023년 3월) 9

2.
2023.03 구독 인증기관 무료, 개인회원 유료
In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.
4,000원
3.
2023.03 구독 인증기관 무료, 개인회원 유료
This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.
4,000원
4.
2023.03 구독 인증기관 무료, 개인회원 유료
Microclimate analysis was conducted through actual measurement according to land use status in urban, and CFD analysis was conducted to analyze and predict the microclimate characteristics of urban, and compared and analyzed with the actual measurement results. It was measured in high-rise areas and parks, and the temperature of the park area was 0.4 to 0.6℃ lower, and the relative humidity was 1.0 to 3.0% higher. The correlation coefficient was obtained by comparing the results of the computational fluid analysis with the results of the computational fluid analysis at the actual location located within the CFD analysis area for validation. The seasonal correlation coefficients are all higher than 0.8, so it is judged that they can be applied to microclimate analysis in urban area. The computational fluid analysis was divided into three areas (low-rise, low and high-rise, and high-rise) centered on the A2 point. On average, the low-rise area was 0.1 to 0.4% higher than the high-rise area. In the low and high-rise area and high-rise area, the pith of buildings are wide, so the airflow is smooth, so it is judged that the temperature is relatively low.
4,000원
5.
2023.03 구독 인증기관 무료, 개인회원 유료
This study proposes an RCS composite damping device that can achieve seismic reinforcement of existing buildings by dissipating energy by inelastic deformation. A series of experiments assessing the performances of the rubber core pad, hysteretic steel slit damping device, and hybrid RCS damping device were conducted. The results showed that the ratios of the deviations to the mean values satisfied the domestic damping-device conformity condition for the load at maximum device displacement in each direction, at the maximum force and minimum force at zero displacement, as well as the hysteresis curve area. In addition, three analysis models based on load-displacement characteristics were proposed for application to seismic reinforcement design. In addition, the validity of the three proposed models was confirmed, as they simulated the experimental results well. Meanwhile, as the shear deformation of the rubber-core pad increased, the hysteretic behavior of super-elasticity greatly increased the horizontal force of the damping device. Therefore, limiting the allowable displacement during design is deemed to be necessary.
4,000원
6.
2023.03 구독 인증기관 무료, 개인회원 유료
A bending experiment was conducted to verify the structural performance of the U-flange truss hybrid bean using rebars or steel pipes to reinforce the upper compression zone. As a result of evaluating the bending strength of the truss hybrid beam according to the Structural Design Standard (KDS 14 2020: 2022) by introducing the lattice member as a tensile resistance element, the following conclusions were obtained. Considering the lattice element as a tensile resistance element, the nominal bending strength was increased by 38.57 to 47.90 kN.m. As a result of reviewing the experiment as to whether the flexural member has proper ductility, it was found that it is desirable to place appropriate rebars, steel quality plans, and lateral restraints on the upper and lower parts of the hybrid beam to have sufficient ductility ratio.
4,000원
7.
2023.03 구독 인증기관 무료, 개인회원 유료
Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.
4,000원
8.
2023.03 구독 인증기관 무료, 개인회원 유료
A timber lattice roof, which has around 30m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by stiffness of connection with various asymmetric snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the asymmetric snow load with the lower level stiffness of connection decreased the level of buckling load significantly.
4,000원
9.
2023.03 구독 인증기관 무료, 개인회원 유료
In this study, the performance evaluation of the RC frame specimen (RV2) which was strengthened by a steel frame and a steel damper with the lateral deformation prevention details proceeded. The comparison objects are bare frame specimen (BF), RV2 and AWD, where AWD is a specimen reinforced with steel damper and aramid fiber sheets. In the evaluation of envelope curve, stiffness degradation, and energy dissipation capacity, RV2 was evaluated to have excellent capacity as a whole. To evaluate the strengthening effect of the steel frame based on the maximum strength and energy dissipation capacity, it was evaluated to have a 38% of the RV2’s capacity.
4,000원