검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,937

        83.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 한국산 맵시벌과 3종 (운문점박이납작맵시벌, 잎말이나방살이뭉툭맵시벌, 안경꼬마자루맵시벌)의 새로운 숙주를 보고하고 자 한다. 새로운 숙주는 각각 자나방과, 잎말이나방과, 풀명나방과에 속하며, 이 중 자나방과와 풀명나방과는 각각 쌍점박이납작맵시벌속, 안경꼬 마자루맵시벌속의 숙주로써 처음으로 기록된다. 여기에 맵시벌과 3종의 간략한 특징과 우화된 표본의 사진, 숙주의 성충 사진을 제공하였다.
        4,000원
        84.
        2023.05 구독 인증기관·개인회원 무료
        Corrosion-related challenges remain a significant research topic in developing next-generation Molten Salt Reactors (MSRs). To gain a deeper understanding of preventing corrosion in MSRs, previous studies have attempted to improve the corrosion resistance of structural alloys by coating surfaces such as alumina coating. To conduct a corrosion test of coating alloys fully immersed in molten salt, it’s important to ensure that the coating application process is carefully carried out. Ideally, coating all sides of the alloy is necessary to avoid gaps like corners of the alloy, while only applying a one-sided coating alloy can lead to galvanic corrosion with the base metals. Using the droplet shape of eutectic salt applied to only one side of the coating alloy would avoid these problems in conventional corrosion immersion tests, as corrosion would occur solely on the coating surface. Although the droplet method for corrosion tests cannot fully replicate corrosion in the MSRs environment, it offers a valuable tool for comparing and evaluating the corrosion resistance of different coating surfaces of alloys. However, the surface area is important due to the effect of diffusion in the corrosion of alloy in molten salt environments, but it is difficult to unify in the case of droplet tests. Therefore, understanding the droplet-alloy properties and corrosion mechanism is needed to accurately predict and analyze these test systems’ behavior highlighting unity for corrosion tests of different coating surfaces of alloys. To analyze the molten salt droplet behavior on various samples, pelletized eutectic NaCl-MgCl2 was prepared as salt and W-, Mo-coating, and base SS316 as samples. At room temperature, the same mass of pelletized eutectic NaCl-MgCl2 was placed on different samples under an argon atmosphere and heated to a eutectic point of 500°C in a furnace. After every hour, the molten droplets were hardened by rapid cooling at room temperature outside the furnace. The mass loss of salts and the contact area of the samples were measured by mass balance and SEM. The shape, surface area to volume ratio, and evaporation of the droplets of NaCl-MgCl2 per each coating sample and hour were analyzed to identify the optimal mass to equalize the contact coating surface of alloys with salts. Furthermore, We also analyzed whether their results reached saturation of corrosion products through ICP-MS. This will be significant research for the uniformity of the liquid-drop shape corrosion test of the coating sample in molten eutectic salts.
        85.
        2023.05 구독 인증기관·개인회원 무료
        LiCl-KCl eutectic possesses unique properties such as a low melting point, high thermal conductivity, and good electrical conductivity. These properties make it suitable for various applications, including nuclear power generation, pyroprocessing in nuclear waste management, and thermal energy storage systems. In most experiments using LiCl-KCl, the molten salt composition is an important factor; therefore, periodic analysis through sampling is necessary for monitoring compositional changes. Although manual sampling is typically used, it is time-consuming and can introduce errors due to low reproducibility. To address this issue, we have developed an automatic molten salt sampling device using the cold-finger method. This method involves immersing the tip of a tungsten rod in hightemperature LiCl-KCl, removing it after a few seconds, and allowing the adhered molten salt to solidify instantly. A collector then scratches and drops the solidified sample. These processes are carried out automatically using servo motors, enabling the sampling device to move around the molten salt system. We have optimized the sampling conditions, such as insertion and withdrawal rate, immersion time, and the interval between continuous sampling, based on the molten salt temperature. The temperature was set between 500°C and 850°C, considering the operating temperatures of the applications. In addition to sampling speed, the sampling depth is a key condition for determining the sampling mass. Therefore, we examined the amount of sample depending on the sampling depth and, particularly, considered the change in salt height when sampling is performed continuously. As a result, we determined the number of sampling iterations required to reach the target sample mass. Furthermore, to minimize the initial salt loss, we noted that sampling from the salt surface resulted in less representative samples. To determine the reliability, we compared the results of surface sampling with those obtained when sampling at the middle of the salt. This study will enable highly reproducible and reliable sampling by providing a prototype for an automatic sampling device for molten salt along with guidelines.
        86.
        2023.05 구독 인증기관·개인회원 무료
        Measuring the concentration of corrosion products or nuclear fission products (FPs) in molten salts is crucial for pyroprocessing and molten salt reactors. Electrochemical analysis methods that can be performed in situ offer significant advantages for monitoring the concentration of corrosion products or FPs in molten salts. A microelectrode is an electrode with a length of several tens of micrometers on one side. The use of a microelectrode for electrochemical analysis has several advantages due to its small size, including rapidly reaching the limiting current regardless of the scan rate, immediate attainment of the limiting current upon applying an overpotential for instant monitoring within milliseconds, accurate measurement even in low convection systems, a small iR drop resulting from low flowing current and high signal accuracy, and high current density resulting in a high signal-tonoise ratio (SNR). Among various methods for making microelectrodes, techniques involving cutting a thin wire or using capillaries (such as the dual-bore capillary and pulled glass capillary methods) require precise manual skills and experience. Therefore, the results may vary depending on the maker’s skill level, and it can be difficult to control the electrode’s area, thickness, and surface uniformly. Recent research has focused on using semiconductor processes to fabricate microelectrodes, where CVD, metal sputtering, photolithography, and etching processes work together to deposit, refine, and shape the required material on a silicon wafer to create microelectrodes. However, the durability of microelectrodes produced this way is still low (usable for about 15-30 minutes), and there is no clear research on the degradation mechanism over time. To verify the proper operation of the fabricated microelectrodes, cyclic voltammetry (CV) is performed at various scan rates (from 10 mVs-1 to 2 Vs-1), and chronoamperometry (CA) is also examined to confirm whether the electrodes rapidly reach a steady-state current. After confirming their proper operation, CV is continuously measured until the microelectrodes are destroyed in a LiCl-KCl solution containing a small amount of FPs (Sm 340 mM) at 450°C. By observing changes in the electrical signal of the microelectrodes over time, the durability is evaluated, and the mechanism of performance degradation of the electrode is discovered. The experiment is then repeated by gradually increasing the temperature by 30°C from 450°C up to 600°C to observe the changes with temperature. This study provides basic information for future microelectrode experiments, and by diagnosing the cause of destruction, a more durable microelectrode structure can be manufactured.
        87.
        2023.05 구독 인증기관·개인회원 무료
        Molten salt reactors have several advantages over conventional light water reactors. These include producing less nuclear waste, operating at higher power efficiency and inherent safety due to the low operating pressure. NaCl-MgCl2 eutectic salt is one of the candidates for the molten salt reactor coolant. However, because the salt is very hygroscopic, structural material corrosion occurs resulting in the high cost to maintain. To mitigate corrosion there have been many studies for the dehydration of the salt, especially focusing on the magnesium chloride. The reason is that the moisture adsorbed to the magnesium chloride undergoes hydrolysis over 200 degrees Celsius and decomposes to MgOHCl while the moisture associated with the NaCl is easily liberated during the heating procedure without chemical reaction. As the operating temperature of the molten salt is between 500 and 700 degrees Celsius, the MgOHCl is believed as the main cause for the structural corrosion. In this research, thermal dehydration of the salt with elemental Mg, for the NaCl-MgCl2 eutectic, was studied based on the previous dehydration methods and considering scalable and easy to handle. The MgOHCl was removed both through the thermal decomposition and the reduction by Mg metal. After the removal of MgOHCl, based on the difference between the freezing points and the density, the salt cooled down very slowly to ensure the separation between the purified salt and the disposals such as MgO and remaining Mg metals. The efficiency of the dehydration method was determined by the concentration of the MgOHCl. The concentration was determined by cyclic voltammetry and the result was compared with undehydrated salt and salt dehydrated thermally without the addition of Mg metal. To qualify and quantify the MgOHCl content through the cyclic voltammetry, it was necessary to observe the signal by adding MgOHCl to each sample. Based on the thermogravimetric analysis result of MgCl2· 6H2O, MgOHCl powder was formed through heating the MgCl2·6H2O.
        88.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive wastes, including used nuclear fuel and decommissioning wastes, have been treated using molten salts. Electrochemical sensors are one of the options for in-situ process monitoring using molten salts. However, in order to use electrochemical sensors in molten salt, the surface area must be known. This is because the surface area affects the current of the electrode. Previous studies have used a variety of methods to determine the electrode surface area in molten salts. One method of calculating the electrode surface area is to use the reduction current peak difference between electrodes with known length differences. The method is based on the reduction peak and has the benefit of providing long-term in-situ monitoring of surfaces immersed in molten salt. A number of assumptions have been made regarding this method, including that there is no mass transport by migration or convection; the reaction is reversible and limited by diffusion; the chemical activity of the deposit should be unity; and species should follow linear diffusion. For the purpose of overcoming these limitations, a variety of machine learning algorithms were applied to different voltammogram datasets in order to calculate the surface area. Voltammogram datasets were collected from multiarray electrodes, comprising a multiarray holder, two tungsten rods (1 mm diameter) working electrodes, a quasi-reference electrode, and a counter electrode. The multiarray electrode holder was connected to the auto vertical translator, which uses a servo motor, for changing the height of the rod in the molten salts. To make big and diverse data for training machine learning models, various concentrations of corrosion products (Cr, Fe) and fission products (Eu, Sm) in NaCl-MgCl2 eutectic salts were used as electrolyte; electrolyte temperatures were 500, 525, 550, 575, and 600°C. This study will demonstrate the potential of utilizing machine learning based electrochemical in situ monitoring in molten salt processing.
        89.
        2023.05 구독 인증기관·개인회원 무료
        Aluminum’s exceptional properties, such as its high strength-to-weight ratio, excellent thermal conductivity, corrosion resistance, and low neutron absorption cross-section, make it an ideal material for diverse nuclear industry applications, including aluminum plating for the building envelope of nuclear power plants. However, plating aluminum presents challenges due to its high reactivity with oxygen and moisture, thus, complicating the process in the absence of controlled environments. Plating under an inert atmosphere is often used as an alternative. However, maintaining an inert atmosphere can be expensive and presents an economic challenge. To address these challenges, an innovative approach is introduced by using deep eutectic solvents (DES) as a substitute for traditional aqueous electrolytes due to the high solubility of metal salts, and wide electrochemical window. In addition, DESs offer the benefits of low toxicity, low flammability, and environmentally friendly, which makes DESs candidates for industrial-scale applications. In this study, we employed an AlCl3-Urea DES as the electrolyte and investigated its potential for producing aluminum coatings on copper substrates under controlled conditions, for example, current density, deposition duration, and temperature. A decane protective layer, non-polar molecular, has been used to shield the AlCl3-Urea electrolyte from the air during the electrodeposition process. The electrodeposition was successful after being left in the air for two weeks. This study presents a promising and innovative approach to optimizing aluminum electrodeposition using deep eutectic solvents, with potential applications in various areas of the nuclear industry, including fuel cladding, waste encapsulation, and radiation shielding.
        90.
        2023.05 구독 인증기관·개인회원 무료
        Laser scabbling has the potential to be a valuable technique capable of effectively decontaminating highly radioactive concrete surface at nuclear decommissioning sites. Laser scabbling tool using an optical fiber has a merits of remote operation at a long range, which provides further safety for workers at nuclear decommissioning sites. Furthermore, there is no reaction force and low secondary waste generation, which reduces waste disposal costs. In this study, an integrated decontamination system with laser scabbling tool was employed to test the removal performance of the concrete surface. The integrated decontamination system consisted of a fiber laser, remote controllable mobile cart, and a debris collector device. The mobile cart controlled the translation speed and position of the optical head coupled with 20 m long process fiber. A 5 kW high-powered laser beam emitted from the optical head impacted the concrete block with dimensions of 300 mm × 300 mm × 80 mm to induce explosive spalling on its surface. The concrete debris generated from the spalling process were collected along the flexible tube connected with collector device. We used a three-dimensional scanner device to measure the removed volume and depth profile.
        91.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to evaluate the feasibility of the new marine leisure ships. In order to achieve the research purpose, the cost and income were calculated based on the operating of other marine leisure ships, and the feasibility of the project was empirically analyzed. This study established a research model that applies the values derived by empirically analyzing ships with similar specifications, to the new marine leisure ships. We then calculated the cost-benefit analysis, net present value, and internal return, and evaluated the feasibility of the project based on this. As a result of the business feasibility analysis of investing in marine leisure ship, it was found that economic feasibility exists with a B/C of 1.042 and 1.049 for new and secondhand ships, respectively; however, considering the stability of the ship and the publicity and continuity of the business operation, it is recommended to invest in new ships compared to secondhand ships. The total benefit over the 10-year operating period using a social discount rate of 4.5% was evaluated to be about KRW 292.0 billion, which is higher than the total cost of KRW 256.6 billion. In conclusion, the profitability analysis showed that the B/C was 1.042, the NPV was KRW 193 billion, and the IRR was 2.1%, which indicates that profitability is weakly secured.
        4,000원
        92.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Establishing a ship's passage plan is an essential step before it starts to sail. The research related to the automatic generation of ship passage plans is attracting attention because of the development of maritime autonomous surface ships. In coastal water navigation, the land, islands, and navigation rules need to be considered. From the path planning algorithm's perspective, a ship's passage planning is a global path-planning problem. Because conventional global path-planning methods such as Dijkstra and A* are time-consuming owing to the processes such as environmental modeling, it is difficult to modify a ship's passage plan during a voyage. Therefore, the D* algorithm was used to address these problems. The starting point was near Busan New Port, and the destination was Ulsan Port. The navigable area was designated based on a combination of the ship trajectory data and grid in the target area. The initial path plan generated using the D* algorithm was analyzed with 33 waypoints and a total distance of 113.946 km. The final path plan was simplified using the Douglas–Peucker algorithm. It was analyzed with a total distance of 110.156 km and 10 waypoints. This is approximately 3.05% less than the total distance of the initial passage plan of the ship. This study demonstrated the feasibility of automatically generating a path plan in coastal navigation for maritime autonomous surface ships using the D* algorithm. Using the shortest distance–based path planning algorithm, the ship's fuel consumption and sailing time can be minimized.
        4,000원
        93.
        2023.05 구독 인증기관·개인회원 무료
        By developing plasma torch melting technology in 1996, our company has developed the first generation 150 kW (’96~’02), the second generation 500 kW (’08~’12), and the third generation MW plasma torch melting facility (’14~’18), and completed facility upgrading (’20~’23). The MW plasma torch melting facility is equipped with CCTV to monitor waste input, melting, torch integrity, and melt discharge. The lens is installed inside a metal housing made of stainless steel to prevent damage caused by external impacts and high temperatures, and supplies nitrogen to prevent cooling and lens contamination. As a result of the demonstration test, as the temperature inside the melting furnace increased after starting the plasma torch, the resolution decreased along with noise in the CCTV, and facility monitoring was difficult due to high temperatures and foreign substances (fume). Based on the test results, CCTV was changed to a non-insertion type that was not directly exposed to high temperatures, and a filter (quartz) was additionally applied to monitor the melt smoothly. As a result of applying the newly manufactured CCTV to the demonstration test, smooth monitoring ability was confirmed even at normal operating temperature (above 1,500°C). Through this facility improvement, the operation convenience of the plasma torch melting facility has been secured, and it is expected that it will be able to operate stably during long-term continuous operation in the future.
        94.
        2023.05 구독 인증기관·개인회원 무료
        Plasma melting technology is a high-temperature flame of about 1,600°C or higher generated using electrical arc phenomena such as lightning, and radioactive waste generated during the operation and dismantling of nuclear power plants is not classified according to physical characteristics. It is a technology that can meet waste disposal requirements through treatment and reduction. Plasma torch melting technology was used for volume reduction and stable treatment of HVAC filters generated from nuclear power plants HVAC (Heating Ventilation and Air Conditioning). filter was treated by placing 1 to 3 EA in a drum and injecting it into a plasma melting furnace at 1,500°C, and the facility was operated without abnormal stop. A total of 132.5 kg of filter was treated, and the high-temperature melt was normally discharged four times. It was confirmed that the plasma torch melting facility operates stably at 500 LPM of nitrogen and 370-450 A of current during filter treatment. Through this study, the possibility of plasma treatment of filters generated at nuclear power plants has been confirmed, and it is expected that stable disposal will be possible in the future.
        95.
        2023.05 구독 인증기관·개인회원 무료
        For the performance analysis of deep geological repository systems, numerical simulation with multi-physics is required, which specifically covers Thermal (T), Hydraulic (H), and Mechanical (M) behaviors in the disposal environment. Numerous simulation models have been developed so far, each of which varies in the approach and methodology for solving THM problems. Fully-coupled THM simulation codes such as ROCMAS, THAMES, and CODE_BRIGHT were mainly developed in the initial stage of DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX), with the advantage of thorough calculations consisting of correlated several variables on different physics. Due to the difficulty of solving the complex Jacobian Matrix and the following burden for the computational calculation, weakly-coupled THM models have been suggested in recent researches: TOUGH2-MP with FLAC3D, TOUGH2 with UDEC and OpenGeoSys with FLAC3D. This methodology of loose coupling allows the practical use of computational code optimized for each physics, thereby increasing the efficiency in simulation. However, these suggested models require two different numerical codes to calculate THM behaviors, which leads to several inherent issues: compatibility during maintenance, updating and dependency between two codes. In this study, therefore, the authors build a unified code for simulating THM behaviors in the deep geological repository. The concept involves the iterative sequential coupling between TH and M for calculation efficiency. As having developed the simulation code, High-level rAdiowaste Disposal Evaluation System (HADES), to describe TH behavior based on Multi-physics Object-Oriented Simulation Environment (MOOSE) software, the authors make a milestone to develop and couple the MOOSE-based new code for M behavior as Sub-app, with the previous HADES set to be Main-app. New model for M behavior will be verified with the benchmark case of DECOVALEX-THMC Task D, comparing the mechanical simulation results: stress evolution over time, profiles of stress and vertical displacement. The existing simulation results from HADES will also be updated with the coupled calculations, with regard to temperature and saturation. Additionally, the effective stress evolution can be assessed in terms of repository’s stability with Spalling Strength and Mohr-Coulomb failure criterion. This concept for new simulation model has its meaning in that it aims to demonstrate the specific methodology of loosely coupling multi-physics in unified simulation code and analyze THM complex interactions with considering mutual influence on various physics. It is expected that HADES can be renewed as an integral simulation model for deep geological repository systems by possessing the capacity for analyzing and assessing mechanical behavior.
        96.
        2023.05 구독 인증기관·개인회원 무료
        Chemical environments of near-field (Engineered barrier and surrounded host rock) can influence performance of a deep geological repository. The chemical environments of near-field change as time evolves eventually reaching a steady state. During the construction of a deep geological repository, O2 will be introduced to the deep geological repository. The O2 can cause corrosion of Cu canisters, and it is important predicting remaining O2 concentration in the near-field. The remaining O2 concentration in the near field can be governed by the following two reactions: oxidation of Cu(I) from oxidation of Cu and oxidation of pyrite in bentonite and backfill materials. These oxidation reactions (Cu(I) and pyrite oxidation) can influence the performance of the deep geological repository in two ways; the first way is consuming oxidizing agents (O2) and the second way is the changing pH in the near-field and ultimately influencing on the mass transport rate of radionuclides from spent nuclear fuel (failure of canisters) to out of the engineered barrier. Hence, it is very important to know the evolution of chemical environments of near-field by the oxidation of pyrite and Cu. However, the oxidation kinetics of pyrite and Cu are different in the order of 1E7 which means the overall kinetics cannot be fully considered in the deep geological repository. Therefore, it is important to develop a simplified Cu and pyrite oxidation kinetics model based on deep geological repository conditions. Herein, eight oxidation reactions for the chemical species Cu(I) were considered to extract a simplified kinetic equation. Also, a simplified kinetics equation was used for pyrite oxidation. For future analysis, simplified chemical reactions should be combined with a Multiphysics Cu corrosion model to predict the overall lifetime of Cu canisters.
        97.
        2023.05 구독 인증기관·개인회원 무료
        Since 1992, various numerical codes, such as TOUGH-FLAC and ROCMAS, have been developed and validated to dispose of Spent Nuclear Fuel (SNF) safely through a series of DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX) projects. These codes have been developed using different approaches, such as general two-phase flow and Richards’ flow which is an approximated approach neglecting gas pressure change, to implement the same multiphysics behaviors. However, the quantitative analysis for numerical results, which originated from different fundamental approaches, has not been conducted accurately. As a result, improper utilization of the approach to analyze certain conditions occurring such as dramatic gas pressure change may result in erroneous outcomes and systemic problem pertaining to TH analysis. In this study, the quantitative analysis of the two approaches, in terms of TH behavior, was conducted by comparing them with a 1D simulation of the CTF1 experiment carried out by laboratory experiment. The results calculated by different approaches show agreement in terms of TH behaviors and material properties change until 120°C. The results verify the applicability of Richards’ flow approach in a high temperature environment above the current thermal criteria, set as 100°C, and gas pressure change does not have a significant impact until 120°C. Therefore, although further studies for applicability of Richards’ flow are needed to suggest the appropriate temperature range, these quantitative analyses may contribute to the performance assessment of a compact repository using the high-temperature bentonite concept, which is currently gaining attention.
        98.
        2023.05 구독 인증기관·개인회원 무료
        Currently, the development of evaluation technology for vibration and shock loads transmitted to spent nuclear fuel and structural integrity of spent nuclear fuel under normal conditions of transport is progressing in Korea by the present authors. Road transportation tests using surrogate spent nuclear fuel were performed in September, 2020 using a test model of KORAD-21 transportation cask and sea transportation tests were conducted from September 30 to October 4, 2021. Finally, the shake table tests and rolling test were conducted from October 31 to November 2, 2022. The shake table test was performed with the input load produced conservatively from the data obtained from the road and sea transportation tests. The test input was produced based on the power spectral densities and shock response spectrums from the transportation tests. In addition to the test inputs from the road and sea tests, sine sweep input and half sine input were used to verify the vibration characteristics of assemblies under boundary conditions during normal conditions of transport. Because the input load of the shake table test was produced conservatively, a slightly larger strain than the strain value measured in road and sea transportation tests was measured from the shake table tests. In the case of the sea test, it is considered that the process of enveloping the data in the 20 to 80 Hz range generated by the engine propeller system was performed excessively conservatively. As a result of analyzing the test results for the difference in boundary conditions, it was confirmed that the test conditions of loading the basket generated a relatively large strain compared to the conditions of loading the disk assembly for the same input load. Therefore, it is concluded that a transportation cask having a structure in which a basket and a disk are separated, such as KORAD-21, is more advantageous in terms of vibration shock load characteristics under normal conditions of transport than a transportation cask having an integral internal structure in which a basket and a disk are a single unit. However, this effect will be insignificant because the load itself transmitted to the disk assembly is very small.
        99.
        2023.05 구독 인증기관·개인회원 무료
        In Korea, additional regulatory requirements are increasing due to the full-scale decommissioning of nuclear power plants following the permanent shutdown of Kori Unit 1 and Wolseong Unit 1. Accordingly, it is necessary to preemptively expand the scope of physical protection regulations from design, construction, and operation stage to back-end nuclear fuel cycle such as cessation of operation and decommissioning. According to Article 2, Paragraph 24 of the Nuclear Safety Act, the decommissioning of nuclear facilities is defined as all activities to exclude them from the application of the Nuclear Safety Act by permanently suspending the operation of nuclear facilities, demolishing the facilities and sites, or removing radioactive contamination. In other words, it refers to a series of technologies or activities to safely and efficiently dismantle nuclear power plant and remove radioactive contamination and restore them to their original state after permanently shut down of nuclear power plant. Security changes during decommissioning and decontamination since removing fuel from the reactor alters the plant’s safety status, some of the systems or components considered as vital equipment during plant operation will no longer be needed. The vital areas may be reduced as fewer buildings, equipment and systems need to be protected, which means access controls, surveillance and so on can be reduced. And also, decommissioning will probably require more workers than operation would, although this might not be the case at all times. From a security point of view, this might require more personnel or additional access points. Changing operating require changed security measures, to ensure that the required security level will be maintained while at the same time work proceeds efficiently. Once all of the fuel is removed from the plant, radiological release risk is much lower. The lower risk requires a lower level of security measures. Even during the removal of nuclear material and contaminated equipment from nuclear facilities, lower level of security measures should meet regulatory requirements based on a graded approach. Therefore, this study intends to examine the responsibilities and obligations of regulatory authorities, regulator, and nuclear operators in terms of protection after permanent shutdown and decommissioning.
        100.
        2023.05 구독 인증기관·개인회원 무료
        Domestic nuclear power plants have developed radiological emergency plans based on the USNRC’s NUREG-0654/FEMA-REP-Rev.1 report and the Korea Institute of Nuclear Safety’s (KINS) research report on radiation emergency criteria for power reactors (KINS/RR-12). NUREG-0654 is a US emergency planning guide for nuclear power plants and provides detailed technical requirements for the content of radiological emergency plans. The document classifies radiological emergencies into three levels: Alert, Site Area Emergency, and General Emergency, which correspond to the white, blue, and red emergency levels used in domestic nuclear power plants. KINS/RR-12 is a technical guidance document published by the Korea Institute of Nuclear Safety in 2012, which divides radiological emergency criteria into criteria for pressurized water reactors (PWRs) and criteria for boiling water reactors (BWRs), and describes in detail the regulatory position and implementation of radiological emergency criteria for domestic PWRs and BWRs. The physical protection-related radiation emergency criteria included in the radiological emergency plan are specified in the radiological emergency criteria guidelines. There are two items each related to white and blue emergencies and one item related to red emergencies. Standard order of emergency plan lists the physical protection-related radiological emergency criteria for domestic PWRs and BWRs, which are identical according to the radiological emergency criteria guidelines. To enhance the physical protection regulation, the legal and regulatory basis for target set identification and vital area identification need to be established by considering radiological and physical protection emergency plan.
        1 2 3 4 5