검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2022.10 구독 인증기관·개인회원 무료
        A rod internal pressure increased by fission gas release is major factor that causes degradation during dry storage of spent fuel. Because rod internal pressure is greatly affected by fuel design, operation power history, it is essential to perform complex calculation using performance code to accurately predict rod internal pressure as function of burnup. However, because it is difficult to apply a complex method into dry storage design and to determine rod internal pressure based on conservative way this study presents a simple correlation that can predict an approximate rod internal pressure as function of burnup For the development of simple correlation, rod internal pressure and fuel rod void volume data measured through about 400 PIE (Post Irradiation Examination) data were used. The developed simple correlation can cover various fuel rod arrays, discharged fuel average burnup, operation history, cladding type, burnup range, and information on Westinghouse type fuel rods such as Spain ENUSA, USA EPRI/ANL/ORNL/PNNL, WEC, etc. In this paper, the data of simple correlation determination is briefly introduced, and the data analysis process and results are summarized. Two correlations that can conservatively determine rod internal pressure and free void volume in fuel rod according to fuel rod average burnup were presented, and the effect of initial He fill pressure was evaluated. In particular, the results of Post Irradiation Examination for 46 fuel rods conducted in Korea are also included, so it is expected that newly presented correlations can be used easily in various ways in the domestic research, industry, and academia.
        2.
        2022.05 구독 인증기관·개인회원 무료
        Laboratory testing to simulate the drying of spent fuel is most often done using a cooling rate of approximately 5°C per hour because there are so many restricted test conditions like R&D project duration limit, budget and temporary electronic supply blackout at laboratory building. However, in a real dry cask storage system, the fuel cools much slower. Early data from KAERI on unirradiated, pre-hydrided cladding has shown that slower cooling may result in more brittle behavior than is currently observed based on these short-term tests. Given the potential safety and future handling implications of failed fuel, it is important to determine if the material properties of spent fuel cladding measured in these laboratory tests are the same as would be observed on fuel that has undergone a much longer, slower cooling, which may provide more time for hydrides to precipitate in the radial direction. KAERI and PNNL have started a collaborative I-NERI R&D project on this topic and each organization will perform tests on unirradiated & irradiated cladding under various hoop stress and cooling rate combinations. Scope of collaborative work is to evaluate long-term cooling (slow cooling rate) on hydride reorientation and subsequent material properties of cladding to determine if past and current research activities on spent nuclear fuel are bounding. The results will be used to direct future testing and help predict cladding performance over a wide range of burnups during extended storage and transportation.
        3.
        2022.05 구독 인증기관·개인회원 무료
        A long-term cooling effect on hydride reorientation of a cladding tube can affect the integrity of spent nuclear fuel transportation and long-term storage. In this study, experimental setup for investigating the degree of radial reorientation of hydrides in the circumferential direction during the long-term cooling was established. The experimental setup was designed to be simplified since the long-term evaluation requires a long term period such as 12, 18 and 24 months when the cladding tube specimen is gradually cooled down from 400°C to 100°C. For the test, hydrogen-charged specimens of 100 ppm, 200 ppm, and 500 ppm were prepared. The specimen was sealed with fixtures and check valve, and was pressurized up to 90 Mpa. To heat the specimen, a box-type furnace was used while the temperature of the specimen was measured from thermocouples attached to the specimen. After the heat treatment, the long-term cooling was performed by developing temperature control program to investigate several cooling rate conditions of the specimen. As a reference case, microstructure and brittle property of the hydrogen-charged specimens of 100 ppm, 200 ppm, and 500 ppm without the long-term cooling was observed. In the case of the hydrogen content, it was uniformly distributed in circumferential direction although it was non-uniform in the axial direction. In the case of the brittle property, a compression test was performed. For the future work, the microstructure and brittle property of the hydrogencharged specimens after the several long-cooling conditions were investigated. Then, the degree of radial reorientation of hydrides in the circumferential direction during the long-term cooling was studied.
        14.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is 95℃ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than 60℃ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of 1010 MeV·cm-2·s-1. Neutron radiation of >1019 n·cm-2 or an integrated dose of gamma radiation exceeding 1010 rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.
        5,200원
        18.
        2010.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        CANDU 사용후핵연료는 핵분열성 핵종의 농도가 비교적 낮아 장기적인 관리 방법으로서 재활용보다는 직접 처분을 고려하고 있으나 처분 부지 확보가 어려워 중간저장 정책이 단기적으로 고려되고 있다. 이와 관련하여 중간저장시설의 운영기간과 최적의 처분 착수시기에 대한 검토가 필요하다. 처분시점의 결정 요인으로는 크게 안전성, 경제성, 수용성을 설정하였다. 안전성은 크게 붕괴열과 핵비확산성 측면에서, 경제성은 각 시설의 관리비용 측면에서, 수용성은 회수성 개념 및 세대 간 책임 윤리 측면으로 나누어 검토하였다. 본 논문에서는 처분시점 결정 요인 분석 결과를 바탕으로 3가지 대안을 비교하고 최적 안을 제시하였다. 중요한 핵심 내용으로는 기술적 측면과 안전성 측면에서는 처분 시점이 빠를수록 좋다는 것과, 최적 CANDU 사용후핵연료 처분시점으로서 2041년 경을 제안하였다.
        4,000원