검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.05 구독 인증기관·개인회원 무료
        The high-level nuclear waste (HLW) repository is a 500-1,000 m deep underground structure to dispose high-level nuclear waste. The waste has a very long half-time and is exposed to a number of stresses, including high temperatures, high humidity, high pressure These stresses cause the structure to deteriorate and create cracks. Therefore, structural health monitoring with monitoring sensors is required for safety. However, sensors could also fail due to the stresses, especially high temperature. Given that the sensors are installed in the bentonite buffer and the backfill tunnel, it is impossible to replace them if they fail. That’s why it is necessary to assess the sensors’ durability under the repository’s environmental conditions before installing them. Accelerated life test (ALT) can be used to assess durability or life of the sensors, and it is important to obtain the same failure mode for reliability tests including ALT. Before conducting the test, the proper stress level must be designed first to get reliable data in a short time. After that, acceleration of life reduction with increasing temperature and temperature-life model should be determined with some statistical methods. In this study, a methodology for designing stress levels and predicting the life of the sensor were described.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The high-level nuclear waste (HLW) repository is a 500-1,000 m deep geological disposal system with a very long life expectancy for disposing of high-level waste, which is known to have a half-life of several thousand years. This repository is subject to harsh environmental conditions, such as high temperature and radiation from high-level waste, that can cause deterioration and crack. When radiation escapes through cracks, it can injure persons on the ground. Therefore, it is essential to install a sensor that can detect problems such as cracks. But, since the high-level nuclear waste (HLW) repository is sealed with bentonite and backfill, the sensor cannot be removed or replaced once it has been installed. Therefore, it is necessary to develop a highly durable monitoring sensor that can withstand harsh environmental conditions. Before attempting to improve durability, it is first required to assess durability quantitatively. And an accelerated life test is a widely used method for assessing durability. However, it is important to obtain the same failure mode when conducting a reliability test, such as an accelerated life test. If the accelerated life test is conducted using different failure modes, the dependability of the results is inevitably diminished. Therefore, in this study, a representative failure mode for the piezoelectric sensor used in the accelerated life test was derived through experiments and literature research.
        3.
        2022.10 구독 인증기관·개인회원 무료
        The high-level waste disposal system is an underground structure exposed to complex environmental conditions such as high temperature, radiation, and groundwater. The high-level waste disposal causes structural cracks and deterioration over time. However, since the high-level waste disposal system is a structure that should be operated for a very long time, developing a high-durability monitoring sensor to detect cracks and deterioration is essential. The durability of the sensor can be evaluated by predicting the expected life through the accelerated life test, one of the reliability qualification tests. The most important factor in the accelerated life test design is setting the harsh stress level. This study figured out the harsh stress level of the piezoelectric sensor, which is commonly used for underground structure monitoring. It is possible to determine the appropriate stress level for the accelerated life test by investigating the harsh stress level for the temperature factor. It will contribute to more accurate life expectancy prediction.
        4.
        2022.05 구독 인증기관·개인회원 무료
        High level nuclear waste (HLW) is surely disposed in repository in safe by being separated from human life zone. Deep geological disposal method is one of the most potent disposal method. Deep geological repository is exposed to high pressure and groundwater saturation due to its depth over 500 m. And it is also exposed to high temperature and radiation by spent fuels. Thus, HLW repository suffers extremely complex thermo-hydro-mechanical-radioactive condition. Long-term integrity of repository should be verified because the expected lifetime of the repository is over 10,000 years. However, the integrity of monitoring sensors are not reach the endurance lifetime of the repository with present technology. And the disposal condition, thermo-hydro-mechanical-radioactive, should shorten the estimated lifetime of the monitoring sensors. Therefore, it is necessary to improve the long-term integrity of the monitoring sensors. Although long-term tests are required to identify the prolonged durability of monitoring sensors, accelerated tests can help curtail test period. Accelerated tests is classified into accelerated stress test and accelerated degradation test and their methodology and theories are investigated. Their tests are design and proceed by following process: 1) identify failure modes, 2) select accelerated stress parameter, 3) Determine stress level, 4) Determine testing time and number of specimens, 5) Define measurement paremeter and failure criteria, 6) Suggest measurement method and measurement duration. Literature reviews were conducted to identify the influence of the disposal conditions such as thermo-hydro-mechnical-radioactive on integrity of material and monitoring sensors. The investigated data reported in this paper will be utilized to verify the improvement of integrity of monitoring sensors.
        5.
        2022.05 구독 인증기관·개인회원 무료
        The high-level nuclear waste disposal system is a structure with a very long life expectancy, and deterioration and cracking of the structure may occur over time. In addition, the high-level nuclear waste disposal system is in complex extreme conditions such as high temperature, groundwater, and radiation. Therefore, we need to develop a highly durable monitoring sensor that can detect the deterioration and crack of structures in extreme conditions. Since the durability of a sensor is closely related to the sensor lifetime, it is essential to predict the sensor lifetime accurately. The sensor lifetime can be predicted through the reliability qualification test. Among them, the accelerated life test conducted under harsh conditions is widely used as a method to shorten the test period. The major factor in carrying out the accelerated life test is to set the appropriate harsh conditions. Therefore, this study experimentally derived the operating limit of the monitoring sensor. It is essential to set the proper harsh conditions when performing the accelerated life test. Through this study, it is judged that it will be helpful in determining the appropriate stress level when performing the accelerated life test for accurate lifetime prediction.