검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.11 구독 인증기관·개인회원 무료
        The high-level nuclear waste (HLW) repository disposes of high-level nuclear waste at a depth of 500 m to 1,000 m underground. Structural health monitoring must be accompanied by the complex environmental conditions of high temperature, high humidity, radiation, and mechanical stress. A thermocouple for measuring temperature, total stress meter and pore pressure meter for measuring stress and water pressure, relative hygrometer and electrical resistivity sensor (TDR or SUS) for measuring humidity, accelerometer for measuring crack signals, and strain gauge for measuring displacement are used. For safety, after disposing of HLW in the HLW repository, access to the disposal tunnel gets blocked, making it impossible to replace or remove the monitoring sensors. So, it is necessary to evaluate the effect of the HLW repository’s environmental conditions on the monitoring sensors and enhance their durability through quantitative life evaluation and shielding. Before evaluating the life of accelerometers and strain gauges used in the HLW repository, an experimental study is conducted to determine failure modes and failure mechanisms under radiation conditions, which are unique environmental conditions of the HLW repository.
        2.
        2023.11 구독 인증기관·개인회원 무료
        In the nuclear environment, sensors ensure safety, monitoring, and operational efficiency under various operating conditions. These sensors come in various forms, each tailored to specific purposes, including nuclear safety and security, waste treatment and storage, gas leak detection, temperature and humidity monitoring, and corrosion detection. Ensuring the longevity of sensors without the need for frequent replacements is a vital goal for researchers in this field. This paper explores materials that can act as shields to protect sensors from harsh environmental conditions (high radiation and temperatures) to enhance their lifetime. The types of material that had been explored were divided into categories: metal and non-metal. Fourteen types of metal and seven different plastic materials were studied and focused on their characteristics and current applications. Considering properties like melting point, intensity, and conductivity, plastic materials are chosen to be examined as sensor shielding material. A preliminary experiment was conducted to verify signal characteristics changes by shielding material. Metal material and plastic material each were placed in the middle of the granite and the target sensor. The result showed that when metal is between the granite and the sensor, the density and impedance are higher in granite than in the metal. This leads to signal attenuation and a shift in resonance frequency, while plastic does not. Therefore, PPS (Polyphenylene sulfide) and PAI (Polyamide-imide) have lower density and impedance than granite while also possessing heat, moisture, and radiation resistance for effective shielding.
        3.
        2023.05 구독 인증기관·개인회원 무료
        The high-level nuclear waste (HLW) repository is a 500-1,000 m deep underground structure to dispose high-level nuclear waste. The waste has a very long half-time and is exposed to a number of stresses, including high temperatures, high humidity, high pressure These stresses cause the structure to deteriorate and create cracks. Therefore, structural health monitoring with monitoring sensors is required for safety. However, sensors could also fail due to the stresses, especially high temperature. Given that the sensors are installed in the bentonite buffer and the backfill tunnel, it is impossible to replace them if they fail. That’s why it is necessary to assess the sensors’ durability under the repository’s environmental conditions before installing them. Accelerated life test (ALT) can be used to assess durability or life of the sensors, and it is important to obtain the same failure mode for reliability tests including ALT. Before conducting the test, the proper stress level must be designed first to get reliable data in a short time. After that, acceleration of life reduction with increasing temperature and temperature-life model should be determined with some statistical methods. In this study, a methodology for designing stress levels and predicting the life of the sensor were described.