검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2012.06 구독 인증기관·개인회원 무료
        Oct4 and Nanog are transcription factors involved in pluripotency of stem cells. In general, Oct4 is up-regulated by Nanog. In previous results, however, Oct4 was differentially regulated by various doses of Nanog in P19 cells. High dose Nanog down-regulated the Oct4 expression. This negative feedback event was performed by DNMT and HDAC through the inhibitor assays (5-AZA-cytidine and trichostatin A). To identify the precise recruited sites for DNMT and HDAC, ChIP assay was performed in differential doses of Nanog. As a result, HDAC1, HDAC2, DNMT3A and Nanog were recruited to CR2, CR3, CR1, and CR4 upon high dose Nanog, respectively. Next, to investigate the differentiation potency of the cells upon high dose Nanog, RT-PCR with specific markers for three germ layers was performed. However, there was no increase for three germ layers in high dose Nanog treated cells except E-cadherin expression. E-cadherin is a specific marker for epithelial cells. Taken together, high dose Nanog induces Oct4 down-regulation and results in differentiating embryonic carcinoma cells to epithelial cell type. These results will be helpful for study on regulation of pluripotency-related genes in embryonic stem cells. * This study was supported by 2012 Post Doctoral Fellowship Program of National Institute of Animal Science, Rural Development Administration, Republic of Korea. This work received grant support from the Agenda Program (No.PJ007577), Rural Development Administration, Republic of Korea.
        3.
        2008.06 구독 인증기관 무료, 개인회원 유료
        Our previous study showed that transgenic (TG) pigs harboring human EPO (hEPO) gene have been shown to have reproductive disorders, including low pregnancy rates, irregular estrus cycle and low little size. To investigate these reasons, we assessed estrus behavior (standing response) and plasma 17B-estradiol (E2) level, which partly reflect reproductive function, during the estrus cycles after synchronization and superovulation by hormone treatments. Then, we analysed blood composition and expression of hEPO gene in TG pigs. Pigs were injected with PG600. After 10 days, pigs were fed with Regumate porcine for 6 days. Blood samples were collected from jugular vein. Analysis of blood composition and E2 level were measured by Hemavet 950 and E2 ELISA kit, respectively. And, the expression of hEPO gene in reproductive organs was quantitated by real-time RT-PCR. The percentage of estrus behavior in TG was significantly decreased. Hematocrit (HCT), hemoglobin (Hb) concentration and red blood cell (RBC) number were significantly higher in TG than wild type (WT). On the other hand, high expression of hEPO gene in TG was observed in the mammary gland as well as in the uterus. Moreover, plasma E2 level was significantly higher in TG than WT. These results suggest that nonspecific expression of hEPO gene in the other organs of TG may affect blood composition and plasma E2 level, thereby causing reproductive disorders.
        4,000원