2013년 하계 자란만 서부 연안에서 Cochlodinium polykrikoides 적조의 미발생 원인을 화학적 현장관측결과와 기존에 발표된 C. polykrikoides의 생리학적 자료를 이용하여 해석하였다. 조사기간 동안 식물플랑크톤 군집은 규조류가 우점하고 있었으며, Cerataulina pelagica, Chaetoceros spp., Navicula spp. 그리고 Nitzschia spp.가 주요 우점종으로 출현하였다. 자란만 서부 연안의 영양염 농도는 이전의 C.polykrikoides 적조 발생 시기에 비해서 DIP 농도는 유사하였지만, DIN 농도는 낮았다. 특히, C. polykrikoides는 자란만 서부 연안에서 우점종으로 출현하는 규조류들에 비해서 무기 영양염에 대한 반포화상수(Ks)가 낮아 이들과의 종 경쟁에서 불리한 위치에 있는 것으로 보였다. 또한 상대적으로 낮은 DIN 농도를 보인 자란만 서부 연안은 질소에 대한 의존성이 높은 C. polykrikoides가 증식하기 위해서 불리한 환경이었다. 따라서 자란만 서부 연안의 낮은 영양염 환경하에서 무기 영양염 경쟁에 대해 불리한 위치에 있는 C. polykrikoides는 규조류의 번무에 따라 출현이 억제된 것으로 생각된다.
목포해역에서 염분의 농도는 우기인 여름철을 제외한 나머지 계절에서는 30.3%에서 31.1%의 범위를 나타내고 있으나 여름철에는 27.6% 로 낮아져 담수의 유입이 많았다는 것을 알 수 있다. 8월 영산호 하구언 직 하류에서 염분의 농도는 23.6% , 목포항에서는 23.4%이였으며 장좌도와 달리도에서는 28.9%, 30.7%로 나타나 담수의 유입이 영산호에 유입되었으며 목포항에서도 혼합되지 않고 있으며 오히려 염도가 약간 낮아진 것으로 보아 목포항의..
2010년과 2011년 추계 광양만에서 식물플랑크톤 군 집구조와 그들의 성장에 미치는 환경요인을 파악하기 위해 만내외측의 19~20개 정점에서 생물학적 요인과 무생물학적 요인을 조사하였다. 또한 식물플랑크톤에 대한 영양염 첨가 효과를 알아보기 위해 2010년 현장 10개 정점의 표층수를 이용하여 생물검정실험을 수행하였다. 2010과 2011년의 영양염 수평적 분포특성은 내만해역I (정점1~9)과 섬진강의 영향을 직간접적으로 받을 수 있는 해역II (정점10~14)에서 상대적으로 높게 나타났고, 해역III (정점15~20)으로 갈수록 점차적으로 감소하여 해역별 차이가 명확하였다. 반면, 크기별로 분획된 Chl. a함량은 영양염농도가 낮은 해역으로 갈수록 극미소(Nano와 Pico)크기의 생물량이 상대적으로 증가하였다. 이와 같은 양상은 2010년보다 2011년이 두드러졌다. 2010년 은편모조류가 대부분의 정점에서 85% 이상으로 우점하였고, 2011년에도 은편모그룹이 전체 식물플랑크톤 군집중 대부분의 정점에서 50% 이상의 높은 비율을차지하였으나, 2010년의 출현개체수의 1/10 수준에 머물렀다. 은편모그룹 다음으로 높은 비율을 차지한 생물군이 규조류 Chaetoceros spp.와 Skeletonema spp.로 나타났다. 생물검정실험에서는 전 해역에서 N첨가군과 NP첨가군의 효율이 대조군과 P첨가군에 비하여 높았고, 특히 현장 영양염농도가 낮게 기록된 정점8과 20의 NP영양염첨가군에서 약 2배의 높은 효율을 보였다. 결과적으로 광양만에서 추계 갑작스럽게 높은 영양염이 공급될 경우 Skeletonema spp.와 같은 영양염 흡수능이 뛰어난 생물이 우점할 수 있을 것이며, 성층붕괴와 같은 일정량의 지속적인 영양염공급은 세포크기가 작은 기회성 특징을 가진 은편모그룹의 성장에 유리한 조건이라는 것을 알 수 있었다.
본 연구는 식물성 플랑크톤의 1차 생산력에 대한 N:P ratio의 영향을 분석하기 위해 “영양염 첨가실험(NEBs)”을 실시하였다. 영양염 첨가실험(NEBs)에 의한 N:P Ratio의 영향은 대청호에서 측정된 수질데이터와 비교분석하였다. 단기 영양염 첨가실험 결과, 인 (P)을 첨가한 처리군들 (N:P Ratio=5, 15, 20, 30)에서의 1차 생산력의 반응이 대조군 (Control)과 인(P)을 첨가한 처리군 (N:P Ratio=80, TV), 질소(N)를 첨가한 처리군(N:P Ratio=150, TVI)에서보다 높았다. 또한 질소 (N)를 처리한 처리군에서는 대조군과 모든 처리군에서보다 1차 생산력의 반응이 유의하게 작았다. 영양염 첨가실험의 결과, 식물성 플랑크톤의 성장에 인이 제한영양염으로 작용하고 있었으며, 질소첨가 (Spiking N)는 식물성 플랑크톤의 성장을 억제한 것으로 사료된다. 대청호의 영양염 변이 분석 결과, 최소 N:P Ratio에서 엽록소-a의 최대농도가 나타났고, N:P Ratio는 식물성 플랑크톤의 성장에 대한 핵심 조절자로 사료되었다. 본 연구결과를 종합해 볼 때, N:P Ratio가 식물성 플랑크톤의 성장을 조절하는 핵심 인자로 작용 할 것으로 사료된다.
제주연안선 부근에 밀집된 육상양식장 배출구 주변 4개 해역(애월리, 행원리, 표선리, 일과리)에서 수질환경의 시공간적 변화에 영향을 미치는 요인을 파악하기 위해 2010년 2월부터 2011년 12월까지 격월로 총 12회 조사하였다. 주성분 분석 결과 조사해역에서 연중 영양염의 분포는 염분과의 관련성 없이 배출구로부터 공급되는 물질에 의해 영양염의 농도가 조절되어, 연안에서 외해역으로 갈수록 농도구배가 감소하는 특징을 나타냈다. 특히 용존무기질소의 경우는 배출구와 인접한 해역에서는 부영양상태로 인에 비해 질소가 과잉되고 있었다. 유기물의 분포는 담수유입량이 증가하는 고수온기에 증가하는 경향을 보였다. 식물플랑크톤의 생물량 변화는 애월 및 행원해역은 담수유입과 관련된 기상요인(기온 및 강우), 표선 및 일과는 영양염의 인위적 공급요인(양식장 배출수)에 의한 영향을 주로 받는 것으로 나타났다. 특히, 배출구로부터 직선거리 약 300 m 및 수심 10 m이내 해역의 표ㆍ저층에서는 고영양염 농도 분포가 지속되고 있어, 부영양화 과정에서 발생하는 문제를 직ㆍ간접적으로 받을 수 있는 가능성을 나타냈다. 육상양식장의 운영 시 취수지점이 배출수의 영향을 받는 지점에 위치할 경우 사육수질의 문제가 발생할 수 있다.
This study aims to investigate the optimum conditions (namely pH and Mg2+ concentration) for removing nutrients using MgCl2. I t will also aim to remove high concentrations of nutrients such as those found in wastewater using MgCl2 with the aid of zeolite. I t was observed that nutrient removal using MgCl2 is best at pH 9. Increasing the pH further would affect NH4 + and PO4 3- ions therefore lowering the removal efficiency. Struvite formation does not occur at equal molar concentrations, which may be due to the absence of seeding material. Although addition of zeolite can increase removal effeciency for nitrogen, 100% removal may not be obtained. The Mg2+ previously present affect the ion exchange negatively.
본 연구는 2002년 1월부터 2003년 5월까지 오염원이 비교적 단순한 산지하천에서의 무기 영양염 및 유기물 변동을 고찰하기 위해 낙동강 지류인 대천천의 상류에서 실시되었다. 조사지점은 인위적인 오염이 없는 DC1, 주위의 식당과 민가에서 생활하수가 유입되는 DC2, DC3, DC4그리고 부분적으로 수질이 자연 정화된 DC5이다. 전기전도도, 탁도, BOD는 하수의 유입으로 인하여 DC2에서 급격히 증가하였다가 DC5에서 다시 낮아졌다. 수층의 NH
육상 오염원의 영향을 적게 받는 완도 해역에서 약 10년간의 월별 수질자료를 이용하여 식물성플랑크톤의 증가에 의한 유기물의 증가에 대하여 분석하였다. 그 결과 DIN의 경우 겨울철인 2월에는 상대적으로 높은 농도인 0.138mg/L를 나타내고 있으며 여름철인 8월에는 0.052mg/L로 매우 낮은 값을 나타내고 있다. DIP의 경우도 DIN과 비슷한 경향을 나타내고 있으며 겨울철인 2월의 농도가 가장 높은 0.015 mg/1이고 여름철인 8월이 가장 낮은 값인 0.011 mg/1를 나타내고 있다. 식물성플랑크톤의 제한영양염을 알아보기 위하여 Redfield ratio(N:P=16:1)를 이용하여 제한영양염을 평가하여 보면 완도해역은 질소가 제한 영양염으로 나타나고 있다. 가장 제한이 되고 있는 계절은 여름으로 N/P의 비가 10.5로 나타났다 Chl.-a는 겨울철인 2월에 비해 봄과 여름인 5월과 8월에 79%, 97%가 증가하는 것으로 나타났다. 유기물의 농도는 COD로 나타내었으며 2월에는 0.84 mg/1로서 가장 낮은 값을 나타내었으며 8월인 여름철에 가장 높은 1.10 mg/1를 나타내었다. 영양염과 Chl.-a의 상관관계는 DIN과의 상관에서 r2M가 0.93, DIP과의 상관에서 r2M〈/TEX〉가 0.89로 매우 높게 나타났다. 이와 같은 결과는 식물성플랑크톤의 증식이 영양염의 감소에 주요 원인이라고 할 수 있다. 또한 Chl.-a와 COD의 회귀분석에서 상관계수 r2M가 0.78로서 상관관계가 있는 것으로 나타났으며 회귀식을 이용하여 분석한 결과 유기물의 생산량은 겨울철에는 17%, 여름철에는 37%가 증가하는 것으로 나타났다. 위의 결과를 종합하면 완도의 해역에서 수온이 증가하는 여름철에 용존성 영양염의 농도는 감소하고 있으나 식물성플랑크톤의 지표가 되는 Chl.-a와 유기물의 지표가 되는 COD는 증가하는 것으로 나타났다. 또한 이들을 회귀분석을 통하여 분석한 결과 상관성이 매우 높은 것으로 나타났다.