검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 748

        112.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study analyzes the service life of the repair methods of jointed plain concrete pavement (JPCP) on expressways in Korea using PMS data. METHODS : The Korea Expressway Corporation PMS data acquired from five major expressways in Korea were used for the analysis. The service lives of the repair methods were considered for two different cases: 1) the previous repair methods had been completely rerepaired by another or the same method due to their damage, and 2) the current repair methods were still in use. RESULTS : The service lives of D/G and section repair were shown to be at least 30 % and 50 % shorter than expected, respectively. Joint sealing and crack sealing exhibited a service life similar to that expected. The Mill-and-Asphalt-overlay method showed an approximately 30 % longer service life; this might be because some damage to the asphalt overlay is typically neglected until subsequent maintenance and repair. When multiple repairs were applied in series for an identical pavement section, the service life of repairs on previously damaged secti ons become even shorter compared to their first application. CONCLUSIONS : It was found that the analyzed service life of most important repair methods did not reach the expected service life, and that the service life of the same repair method becomes shorter as applied to the previously repaired concrete pavement sections. These shorter service lives should be seriously considered in future JPCP repair strategy development.
        4,000원
        113.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Pavement growth (PG) is a phenomenon whereby the overall length of a concrete pavement increases. The increase in length induces an axial compressive force in the concrete pavement slab, resulting in blow-up and damage of adjacent structures, such as a bridge. PG is influenced by several interacting factors, including climatic conditions, pavement materials, joint systems, incompressible particles (IP) infiltrating the joints or cracks in the slab, and an expansion caused by reactive aggregates in the concrete. However, it is difficult to predict PG and blow-up due to various complicated factors. Therefore, in this study, the pavement growth and blow-up analysis (PGBA) package program was developed to predict the PG and blow-up potential. The PGBA can consider the pavement configuration, expansion joint (EJ) configuration, climatic conditions, and design reliability. To evaluate the effects of influencing factors — such as climatic data, EJ configuration, pavement structures and materials, and design reliability — on PG and occurrence time of blow-up, a numerical example was demonstrated and a sensitivity analysis was performed. METHODS : To predict the PG, the concrete temperature was calculated using an appropriate analytical model. The trigger temperature for pavement growth(TTPG) was predicted using a statistical equation that considers pavement age, joint spacing, and precipitation. An analytical solution for estimating the concrete slab movement was performed. Through the calculated TTPG and the amount of PG, the service life of the EJ (width of EJ) can be predicted compared to the allowable width. In addition, by using analytical and finite elements, the safe temperature(Tsafe) for preventing blow-up occurrence was calculated. The blow-up occurrence was assumed to occur when the variation between the concrete temperature and TTPG was larger than Tsafe. RESULTS :As a result of the sensitivity analysis of maximum temperature and precipitation, the temperature and precipitation increase and the EJ service life and possibility of blow-up decrease. Sensitivity analysis was performed on the thermal expansion coefficient, pavement thickness, base layer type, concrete elastic modulus, and joint rotational stiffness in the concrete pavement structure and properties. In the PGBA program, the coefficient of thermal expansion and the type of base layer significantly affect the EJ life, as do the possibility of blowup and the elastic modulus. The joint rotational stiffness and pavement thickness had little effect on the EJ life but were found to affect the possible timing of blow-up. As a result of the PGBA sensitivity analysis of the width and spacing, which are the specifications of the EJ, the life of the EJ and the possibility of blow-up increased as the joint width increased; however, the EJ life and blow-up increased as the EJ interval reached a certain value. It was found that the possibility of a blow-up occurrence decreased. The results for the PGBA program in extreme weather conditions, the life span of EJs, and the possibility of blow-up in normal climates were reduced by over 50 %. CONCLUSIONS : As a result of PGBA sensitivity analysis, it was found that the substrate type, thermal expansion coefficient, precipitation, and alkali-silica reaction had the greatest influence on pavement expansion and blow-up.
        4,900원
        114.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : For large-scale construction, such as a concrete pavement, design and construction are not entirely consistent. If the inconsistency between design and construction is very large, construction quality is significantly degraded, affecting performance life span and driving comfort. The quality of pavement construction is managed according to standards. However, it is difficult to improve construction quality as the standard measures construction quality after construction is completed. Therefore, this study developed a system to measure the construction quality of concrete pavement in real-time and presented the corresponding standards. METHODS : A basic module for simultaneously measuring the width, thickness, and roughness of the concrete pavement was designed. Based on the measurement results of the distance measurement sensor, a calibration method is presented that can remove noise. The system process was developed to measure construction quality based on location and distance data, measured in real-time using GPSs and sensors. The field application experiment was conducted and the results were analyzed. RESULTS : The measurement module is properly designed to be used in concrete pavement construction sites. Noise was removed from the distance measurement sensor results according to the presented calibration method, leaving only the wave of pavement surface irregularities. As a result of applying the system process in the field application, a reasonable level of PRI was observed. CONCLUSIONS : In the past, the width, thickness, and roughness were measured after construction was completed and, if the standard was not met, construction quality control was performed via reconstruction or repair. Through this study, it is expected that the width, thickness, and roughness of the concrete pavement can be measured in real-time and, if the standard is not met, construction quality can be immediately controlled during construction to maintain high quality.
        4,000원
        116.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to verify the effectiveness of the developed ultra-thin-continuously reinforced concrete partition (UT-CRCP) overlay method through a comparative analysis of the early-behavior of the UT-CRCP with a 100 mm cutting overlay of the existing JPCP. METHODS : This study aims to minimize the vulnerability of the existing JPCP (joint section behavior) by overlaying the continuous reinforcement form to constrain joint behavior. For this purpose, the early-behavior of the JPCP section was measured and the early-behavior of the UT-CRCP section was compared with that of the cutting overlay of the same section. The testbed was constructed for comparative analysis of the two types of pavements and the early behavior was measured using the pure environmental loads, i.e., situations where there was no traffic load. For the UT-CRCP, which is a comparative test group, UT-CRCP was constructed approximately one year after the JPCP was constructed by milling the top of the existing JPCP by 100 mm. RESULTS : 1) UT-CRCP was shown to effectively reduce the amount of crack width change on the surface by 17 %, compared to JPCP, by placing reinforcement inside the pavement. 2) The restricting effect of the UT-CRCP was analyzed by comparing the strain generated by the cross-section depth for the two pavement types. As a result, the restricting rate by depth (20, 80, 120, and 280 mm) was 68.4 %, 80.2 %, 89.2 %, and 26.7 %, respectively. 3) We reviewed the comprehensive gauge restricting rate at depths of 80 mm and 120 mm (80.2 % and 89.2 %, respectively) and the absolute value of behavior that is located at the ±20 mm of the interface of JPCP and UT-CRCP. Thus, it was possible to estimate that both layers of pavements exhibit the same behavior (tied) at the interface between the two pavement layers. CONCLUSIONS : In this study, the early behavior of the BCO concept UT-CRCP overlay technique was analyzed and quantitatively presented to overcome the limitations of JPCP with relatively weak point behavior and to increase the commonality of aged concrete pavement to the performance of the new pavement.
        4,000원
        117.
        2020.12 구독 인증기관 무료, 개인회원 유료
        3,000원
        118.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling. METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
        4,000원