검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 21

        1.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the effects of diesel-palm oil biodiesel-ethanol blends on combustion and emission characteristics in a 4-cylinder common rail direct injection (CRDI) diesel engine at low idling operations. The engine speed and engine load was 750 rpm and 40 Nm, while the main and pilot injection timing was respectively fixed at 2 °CA before top dead center (BTDC) and 20 °CA BTDC. The experimental results showed that the cylinder pressure increased with the increasing of palm oil biodiesel ratio from 20% to 100%. In addition, the peak value of cylinder pressure increased by 4.35% compared with pure diesel fuel when 5 vol.% ethanol oil added to diesel oil. Because the palm oil biodiesel and ethanol are the oxygenated fuel, the oxygen content played an important role in improving combustion. Based on the high oxygen content of biodiesel and ethanol, their mixing with diesel fuel effectively reduced PM emissions but increased NOx slightly, while CO and HC had no significant changes.
        4,000원
        2.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        한국과 인도네시아를 포함한 대부분의 국가는 온실가스 감축을 위해 바이오디젤 같은 바이오연료 보급에 대한 강력한 정책을 추진하고 있다. 하지만, 바이오디젤 보급 확대를 위해서는 원료 부족 문제를 먼저 해결해야 한다. 본 연구에서는 원료 공급 안정성을 개선하고 바이오디젤 생산 가격을 낮추기 위해 비식용이면서 동시에 단위면적당 생산성이 높은 인도네시아 열대작물(R. Trisperma) 오일의 바이오디젤 생산 가능성을 조사하였다. 수확기간이 다른 두 종류의 오일은 많은 불순물과 높은 유리지방산 함량을 가지고 있어 효율적인 바이오디젤 생산을 위해, 에스테르화 반응과 전이에스테르화 반응을 실시하였다. 오일은 반응을 진행하기 앞서 여과와 수분제거 과정을 통해 반응의 효율을 높이고자 하였다. 에스테르화 반응은 불균질계 산 촉매인 Amberlyst-15를 사용하였으며, 반응 전 오일들의 산가는 각각 41, 17 mg KOH / g 이었으나, 에스테르화 반응 후 3.7, 1.8 mg KOH/g으로 약 90% 이상의 전환율을 보이며 유리지방산 함량 을 2%이하로 감소시켰다. 이후 전이에스테르화 반응은 KOH를 염기 촉매로 사용하여 바이오디젤 합성 실험을 진행하였다. 생성된 바이오디젤은 약 93%의 FAME 함량을 나타냈으며, 총 글리세롤의 함량은 0.43%으로 제품 규격(FAME 96.5%, 총 글리세롤 0.24%)에는 미달되었다. 이는 지방산 조성 분석 결과 일반적으로 관찰되지 않는 특이 지방산인 α-Eleostearic acid가 10.7~33.4% 포함되어 나타나는 특성으로 판단되며, 추가 반응 최적화 및 분리정제 연구 진행으로 연료품질 규격 달성이 필요한 것으로 나타났다. 기존에 활용되지 못하던 비식용 원료로부터 바이오디젤 생산 기술을 확보할 경우 바이오디젤 보급 확대를 위한 안정적 원료 공급에 기여할 것으로 판단된다.
        4,000원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        급속열분해 바이오오일은 사용 용도를 제한하는 바람직하지 않은 많은 특성을 가지고 있다. 낮은 산도, 불안정성, 수분과 산소 함량, 부식성 증가, 저장동안에 중합 및 낮은 발열량이 적용을 제한하는 주요 특징이다. 에스터 반응을 이용한 공비 수분 제거는 이 모든 특성을 개선할수 있다. 본 연구에서는 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 신갈나무 시료 500 g을 550℃에서 2초 동안 급속열분해하여 바이오오일을 제조하였다. 제조된 바이오오일을 감압(100 hPa) 조건에서 30 min 동안 비휘발성 알콜인 n-butanol 처리하였다. 제조 오일의 수분, 점도, 고위발열량, 산도, FT-IR 및 GC/MS을 분석하였다. 수분은 91.4 % 감소(from 31.5 % to below 2.7 %), 점도는 65.8 % 감소 (from 36.5 to 12.5 cP), 발열량은 96.8 % 증가(from 3,918 to 7,712 kcal/kg), 산도는 1.3 증가했다 (from 2.7 to 4.0). FT-IR 및 GC/MS 분석결과 불안정한 산성물질, 알데히드, 케톤 및 저급 알콜이 안정된 목표 물질로 변환한 것으로 나타났다. 특히 실험 수행 과정에서 급속열분해 바이오오일의 수분 함량이 상당히 감소했다. 이렇게 개선된 품질 개선된 급속열분해 바이오오일은 표준보일러와 열병합발전소 (CHP)의 연료로 이용이 가능하다.
        4,000원
        4.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        바이오항공유 제조 공정 내 수첨업그레이딩 공정의 운전조건 선정은 반응물로부터 얻고자 하는 주생성물인 탄화수소 화합물에 대하여 바이오항공유로서 원하는 탄소수 분포의 물성을 갖도록 하기 위한 중요한 인자이다. 본 연구에서는 식물성 오일 유래 노말 파라핀계 탄화수소 화합물에 대한 수첨 업그레이딩 반응이 0.5 wt.% Pt/Zeolite 촉매 하에서 수행되었으며, 이를 통해 크래킹 반응과 이성질화 반응이 동반됨으로써 바이오항공유로서 물성을 갖는 탄소수 분포인 C8-C16에 해당하는 노말 파라핀계와 이소 파라핀계가 혼합된 탄화수소류 화합물이 제조되었다. 반응온도, 반응압력, 반응물 몰비와 공간속도를 변화하여 얻어진 생성물의 수율 및 조성을 분석하였다. 상기 공정 조건에 대한 정보는 수첨 업그레이딩 반응특성의 이해뿐 아니라 향후 증류를 통한 바이오항공유 제조에 도움을 줄 수 있다.
        4,500원
        5.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        바이오오일은 고품질 화학물질로 이용이 가능하며 차세대 탄화수소 연료와 석유정제업 공급 원료로 사용할 수 있기 때문에 촉망받는 신재생에너지의 하나로 상당한 관심을 받고 있다. 또한 제올라이트는 급속열분해 과정에서 크래킹 반응을 효과적으로 촉진시켜 탈산소 반응을 증가 시키고 탄화수소가 많은 안정된 바이오오일을 만든다. 그래서 본 연구에서는 백합나무 바이오오일 품질개선을 위해 촉매열분해(Control, Blackcoal, Whitecoal, ZeoliteY 및 ZSM-5)를 적용하여 특성을 조사하였다. 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 백합나무 시료 500 g을 465℃에서 1.6초 동안 촉매열분해하여 바이오오일을 제조하였다. 촉매 조건 상태에서 바이오오일의 수율은 Control(54.0%)과 비교하여 Blackcoal(56.2%)를 제외하면, Whitecoal(53.5%), ZeoliteY (51.4%), 및 ZSM-5(52.0%)로 모두 감소했다. 수분 함량이 Control(37.4%)에서 촉매 처리후 37.4~45.2%로 증가함에 따라 발열량((High heating value)은 감소했다. 그러나 다른 다른 바이오오일 특성은 개선되었다. 촉매 적용 결과 바이오오일의 회분과 전산가(TAN)가 감소했고, 특히 수송연료로 중요한 특성인 점도는 Control cP(6,933) 에서 2,578 ~ 4,627 cP로 감소했다. 또한 ZeoliteY는 방향족탄화수소를 생산하고 점도를 개선시키는데 가장 효과적이였다.
        4,200원
        6.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 바이오매스를 열분해하여 생성된 수상오일(water soluble oil)을 얻었다. MDO (Marine Diesel Oil)와 수상오일을 유화시켜 생성된 에멀젼 연료의 특성과 배출가스를 연구 하였다. 바 이오매스로는 톱밥을 사용하였고 500 ℃에서 열분해하여 생성된 물과 탄화수소를 응축시켜서 수상오일 을 얻었다. 수상오일을 MDO에 10∼20% 까지 혼합 후 유화시켜 에멀젼 연료를 만들었다. 엔진 배출가 스 측정은 엔진 dinamometer로 실시하였다. 유화연료는 연소실내에서 미세폭발을 일으켜 연료를 잘게 쪼개어 주어 smoke를 감소시킨다. 그리고 물이 연소실내의 기화열을 빼앗아 연소실 내부의 온도를 낮추 어 NOx 생성을 억제하는 효과를 갖는다. ND-13모드의 각 모드별 배출가스온도가 MDO에 비해 유화 연료를 사용했을 때 낮게 나온 것으로 뒷받침 될 수 있었다.유화연료의 함수율이 증가함에 따라 NOx와 smoke의 배출량은 줄어들었으며, 출력도 함수율 증가에 따라 유화연료 자체의 발열량 감소로 인하여 줄어든 것으로 판단된다.ND-13모드에서 MDO 유화연료를 시험한 결과 바이오매스오일 함유량 20%인 유화연료의 NOx 감 소량은 약 25%, smoke의 총감소량은 약 60%, 그리고 약 15%의 출력손실을 확인하였다.
        4,300원
        7.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        급속열분해 기술은 바이오매스를 수송용 연료와 고품질의 석유화학 생산물로 업그레이드 할 수 있는 바이오오일을 만드는 유망한 수단으로 주목 받고 있다. 이러한 기대에도 불구하고 연료와 석유 화학 생산물의 상업성은 바이오오일의 높고 잘 변하는 점도, 많은 수분과 산소 함량, 낮은 발열량 및 산 성도와 같은 상당히 바람직하지 않은 특징 때문에 한계가 있다. 그래서 본 연구는 가압증류를 통해 바 이오오일의 품질 개선을 목표로 수행하였다. 가압증류에 따른 바이오오일의 특성 변화를 알아보기 위하 여 0.8~1.4 mm 크기의 굴참나무(Quercus variabilis) 시료 600 g을 465℃에서 1.6초 동안 급속열분해 하여 바이오오일을 제조하고, 감압증류(100hPa) 온도는 대조구, 40℃, 50, 60, 70 및 80에서 각각 30분 간 처리하였다. 급속열분해를 통해 생산된 바이오오일, 바이오차 및 가스는 각각 62.6 wt%, 18.0 및 19.3으로 나타났다. 또한 온도별로 생성된 바이오오일은 수분함량 0.9∼26.1 wt%, 점도 4.2∼11.0 cSt, 발열량 3,893∼5,230 kcal/kg 및 pH 2.6∼3.0 수준으로 긍정적 효과가 나타났다. 이러한 바이오오일 품 질개선에도 불구하고 점도는 반대로 증가했으며 여전히 높은 산소 함량, 낮은 발열량 및 산성도 때문에 바이오오일을 실용적인 연료로 사용하기 위해서는 지속적으로 품질 개선이 필요하다.
        4,000원
        8.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        시료의 입경 및 투입량 차이에 따른 바이오오일의 특성변화를 알아보기 위하여 0.5~2.0 mm 크기의 굴참나무(Quercus variabilis) 시료 300~900 g을 465 ℃에서 1.6초 동안 급속열 분해하여 바이 오오일을 제조하였다. 입경 및 투입량 차이에 따른 열분해 생성물의 수율변화에는 눈에 띠는 경향은 없 었지만, 바이오오일 수율이 가장 많아 약 60.3~62.1%를 차지하였고, 미응축가스, 바이오차 순이었다. 바이오오일을 냉각관으로 응축하여 얻은 1차 바이오오일과 전기집진장치로 얻은 2차 바이오오일로 구 분하여 수율을 측정한 결과, 1차 바이오오일의 수율이 2차 바이오오일 수율의 약 2배 이상을 나타내었 다. 그러나 발열량은 2차 바이오오일이 1차 바이오오일 보다 약 2배 이상 높았으며, 최대 5,602 kcal/kg을 나타내었다. 1차 바이오오일의 수분함량이 20%이상으로 2차 바이오오일의 수분함량 10% 이 하였다. 또한 2차 바이오오일의 원소분석 결과, 1차 바이오오일보다 탄소함량이 높고, 산소함량이 낮았 기 때문에 수분함량과 원소조성 특성도 발열량에 영향을 미치는 것으로 판단된다. 바이오오일의 저장온도가 높을수록 또는 저장기간이 길수록 점도가 증가하며, 2차 바이오오일의 점 도 증가 정도가 1차 바이오오일보다 컸는데, 저장기간 중에 바이오오일 성분 간의 화학적 결합에 의한 바이오오일의 고분자화가 진행되는 것으로 판단된다.
        4,000원
        9.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 바이오매스로부터 급속열분해를 통해 난방용, 발전용 및 수송용 연료로 사용하 기 위해 바이오오일을 생산하는 기술개발 현황을 나타내었다. 바이오매스를 작은 규모의 액체연료로 전 환하기 위해 가장 효율적인 방법 중 하나는 급속열분해이다. 급속열분해를 통한 바이오오일은 450 ℃ ~ 600 ℃ 온도에서 바이오매스가 신속히 열분해 되어 증기 급냉를 위해 외부 산소가 없는 조건에서 생산 된다. 이 바이오오일은 최초 건조 바이오매스 기준 최대 75 무게%까지 생산할 수 있지만, 일반적으로 60-75 무게% 수준이 적합하다. 본 연구에서는 바이오매스의 원료특성, 바이오오일 생산원리, 바이오오 일의 특성 및 활용분야에 대한 최근의 개발현황을 살펴보았다.
        4,500원
        10.
        2013.09 구독 인증기관·개인회원 무료
        전 세계적으로 산업의 고도화로 인하여 환경오염이 급속도로 진행되고 있으며, CO2 발생의 증가로 지 구 온난화 현상이 급속도로 진행되고 있다. 기존의 일반 아스팔트포장은 약 160℃의 고온에서 생산 및 시공되기 때문에 CO2가 크게 발생되며, 시멘트포장 또한 시멘트 생산 시 CO2가 발생되고 있다. 최근 강상판 장대교량(케이블교)의 건설이 증가하고 있으며, 사하중을 절감하기 위한 박층 폴리머 콘크리트가 개발되고 있다. 그러나 폴리머 수지도 석유계 재료로 생산되기 때문에 CO2가 발생되며 석유자원 의 고갈로 인한 폴리머 수지의 가격 상승 등이 문제점으로 부각되고 있다. 이러한 문제점의 대안으로 식물성 수지를 사용한 바이오 폴리머 수지를 개발하는 연구가 지속적으로 수행되고 있다. 그러나 식물성 재 료를 사용하게 되면 기존 석유계 수지에 비하여 강도 및 환경 영향에 대한 물리적 특성이 감소하는 문제 가 발생하여 차량하중의 영향이 작은 주차장, 보도, 자전거 도로 등에 적용되고 있는 실정이다. 본 연구에서는 기존 석유계수지의 약 30~50%를 식물성 재료로 대체한 도로포장용 바이오 폴리머 수지를 개발하고자 한다. 식물성 재료는 콩유(Soybean Oil), 피마자유(Castor Oil), 야자수유(Palm Oil) 등 그 종류가 다양하지만 폴리올(Polyol)공정을 거치지 않고 생산이 가능한 피마자유를 이용하여 생산비용을 절감하였으며, 환경 영향 저항성과 관련된 시험을 수행하여 도로포장에 대한 적용성을 평가하였다. 식물 성 재료가 약 30% 첨가된 수지(906-3)와 50% 첨가된 수지(2I)를 대상으로 무처리 상태의 강도와 처리 후(동결융해, 자외선)의 강도를 측정하여 비교·평가하고 염화물에 대한 저항성을 시험하였다. 그 결과 기 존 석유계 폴리머 수지에 식물성 재료를 50% 대체하여도 강도변화가 미미한 결과를 도출하여 바이오 폴리머 수지를 도로포장에 적용하여도 문제가 없음을 확인하였다.
        11.
        2018.05 서비스 종료(열람 제한)
        화석연료는 가격의 변동이 심하고 그 매장량이 한정되어 있고 지나친 화석연료의 사용은 환경적으로 심각한 악영향을 미칠 수 있다. 전 세계적으로 화석연료의 고갈과 더불어 지구온난화 등의 환경문제에 대한 대응방안으로 지속가능한 청정 에너지자원에 대한 필요성이 대두되고 있으며, 관련된 연구개발이 활발히 진행 중이다. 탄소 중립적 친환경에너지인 바이오에너지 분야는 최근 각광받는 신재생 에너지 분야 중 하나이다. 현재 국내 폐목재 발생량은 지속적으로 증가하여 처리 및 활용방안이 필요한 실정이다. 이에 본 연구에서는 폐목재를 활용하여 생산 된 급속열분해 오일을 가스화하여 고품질 합성가스를 생산함으로써 기존의 바이오매스 직접 가스화의 단점을 극복하고자 하였다. 바이오매스를 이용한 가스화 공정은 원료인 바이오매스의 낮은 에너지 밀도로 인하여 가스화 플랜트와 바이오매스 원산지간 거리에 따라 경제성이 감소한다. 이러한 경제성 문제를 극복하기 위한 방안으로 바이오매스 원산지에서 바이오매스를 급속열분해 하여 생산된 고 에너지 밀도의 열분해오일을 가스화 플랜트로 이송하여 에너지를 생산하는 방안이 대두되고 있다. 따라서 본 연구에서는 폐목재를 원료로하여 최적조건에서 생산 된 급속열분해 오일을 원통형 가스화기(0.1 m diameter × 1.4 m height)를 사용하여 E/R ratio, 반응온도 등을 운전변수로 하여 가스화 실험을 수행하였다. 생산되는 합성가스의 조성을 Micro GC를 이용하여 분석하여 고품질 합성가스를 생산할 수 있는 최적 조건에 대한 연구를 진행하였다.
        12.
        2017.11 서비스 종료(열람 제한)
        화석연료의 고갈 및 환경오염 문제가 대두됨에 따라 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 바이오매스 및 폐기물을 에너지원으로 하여 에너지를 생산하는 바이오 에너지분야는 최근 각광받는 신・재생 에너지 분야 중 하나이다. 바이오매스로부터 전환된 바이오 에너지를 사용할 때 발생되는 이산화탄소가 바이오매스의 성장에 다시 쓰이게 되므로 탄소 중립적이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 증기 또는 산소를 산화제로 가스화하여 공기에 비해 높은 발열량을 가지는 합성가스(syn-gas) 생산이 가능하고 적절한 정제 및 조성제어 공정을 거쳐 합성천연가스, FT 디젤, 메탄올, 수소 등의 고부가 합성 연료 생산에 활용할 수 있다. 그러나 바이오매스의 에너지 밀도가 낮기 때문에 가스화 플랜트와 바이오매스 생산지역이 원거리일 경우 높은 운송비용으로 경제성이 떨어지는 단점을 지닌다. 이러한 단점 극복을 위하여 바이오매스 생산지에 급속열분해 플랜트를 건설하여 에너지밀도가 높은 바이오오일을 생산하고 가스화 플랜트로 이송하여 가스화하는 방법이 대안으로 제시되고 있다. 또한 바이오오일 가스화가 바이오매스 직접 가스화에 비하여 TCI(total capital investment)가 낮아 경제적으로 유리하며 합성가스 내 타르 농도가 낮고 수소 및 일산화탄소의 수율이 높아 고품질 합성가스의 생산이 가능하다. 따라서 본 연구에서는 국산재 유래 바이오오일 가스화를 위한 기초실험으로 바이오오일의 가스화 kinetics에 관한 연구를 진행하였다. 바이오오일 시료의 무게감량을 승온 속도에 따라 측정하여 kinetics 인자들(평균반응속도, 활성화에너지)을 도출하였으며, 이를 이용하여 반응차수를 계산하였다.
        13.
        2015.11 서비스 종료(열람 제한)
        우리나라는 국토의 약 64%가 산림으로 구성되어 있으며, 2011년 기준 국내 산림면적은 6,443천ha이다. 산림청 자료에 따르면 국내 산림 바이오매스 발생량은 총 704만 ㎥으로 발생량 중 약 45%인 319만㎥이 제재목, 펄프, 보드용, 축산깔개, 버섯재배, 열병합 발전 등에 이용된 것으로 추정된다. 발생량의 55%인 385 만㎥는 현재에도 미이용 상태로서 이러한 산림 바이오매스 에너지의 이용을 위한 경제성과 효율성 확보를 위한 기술 개발이 시급한 실정이다. 바이오매스를 에너지로 변화하는 열화학적 변환 공정은 연소, 가스화, 급속 열분해 공정이 있으며, 이중 급속열분해 공정은 산소가 없는 조건하에서 500℃ 내외의 고온에서 짧은 시간 동안 반응시킨 후 연료로 전환하는 공정이다. 급속열분해 과정을 거치면 바이오매스는 분자 간 결합뿐만 아니라 C-C 결합, C-O 결합의 해체 등 화학적 전환이 일어나게 되며 최종적으로 액상 연료인 바이오 오일과 고형분인 바이오탄, 가스형태의 비응축성 가스를 생성한다. 바이오 오일은 보일러․터빈 등 발전용 연료뿐만 아니라 수송용 연료와 화학소재 등으로 활용이 가능한 잠재력을 갖고 있다. 따라서 공정 후 최종 생성물의 수율을 최적화하는 것은 공정의 효율성과 바이오 오일의 활용 가능성을 높이는데 중요한 역할을 한다. 더불어 바이오 오일의 물리적․화학적 특성을 분석함으로써 연료로서의 특성을 평가하고 소재화 활용 방안을 구축할 뿐만 아니라 더 나아가 화석연료를 대체할 에너지원으로써의 가치 및 발전 가능성을 가늠할 수 있다. 바이오 오일의 수율과 물리적․화학적 특성에 영향을 미치는 요인으로는 크게 공정 조건과 원료 조건으로 나눌 수 있다. 공정 조건은 반응온도, 반응기내 체류시간이 있으며 원료 조건은 바이오매스 함수율, 입자 크기, 바이오매스 내 화학 조성 등이 있다. 본 연구에서는 공정조건, 원료 조건 변화에 따른 바이오 오일의 물리적․화학적 특성을 연구하기 위하여 분사층 급속열분해 실험장치를 이용하여 폐목재 톱밥 급속열분해 실험을 수행하였다. 급속열분해 실험은 공정 조건인 반응온도, 체류시간, 투입속도와 원료 조건인 바이오매스 입자 크기를 각각 변화하며 실험을 수행하였으며, 각 조건에서 생산된 바이오 오일의 원소분석, 발열량, 수분함량, 점도, pH, GC-MS 분석을 수행하였다. 그리고 실험 결과를 바탕으로 바이오 오일의 연료적 특성 평가 및 화학소재 활용 방안에 대하여 고찰하였다.
        14.
        2015.11 서비스 종료(열람 제한)
        임산 폐기물인 폐목재를 포함한 바이오매스(Biomass)는 대체에너지의 한 분야로 전 세계적으로 활발히 연구가 진행되고 있다. 그 중 바이오매스 열분해를 통한 바이오오일이 주목받고 있다. 그러나 매우 높은 산소비율 및 산성을 띄고, 강한 부식성에 화학적으로 불안정한 특징들을 가지고 있다. 석유 대체자원으로서의 단점들을 보완하기 위해 바이오 오일의 고품질화를 통한 원하는 케미컬 물질 향상에 대한 연구가 필요하다. 이에 대한 연구로 촉매적 고품질화가 있으며, 촉매로는 제올라이트가 있다. 하지만 낮은 hydrothermal stability와 높은 가격으로 경제적인 면으로 떨어진다. 이에 metal oxides에 대한 연구를 통해 단점들을 보완 연구가 필요하다. 본 실험은 Semi-batch reactor를 사용한 저속 열분해(slow pyrolysis)공정이며, 이는 낮은 승온률(10℃/min)과 긴 반응시간(40min)반응이다. 실험 전 Feedstock을 65℃, 5일 오븐에 건조시켰으며, 입자크기는 1 mm 내외이다. 고정된 실험조건은 500℃에서 촉매와 폐목재(1:100)를 섞어서 실험하였다. 선정된 촉매는 MeO(Me=Ca, Mg)이며, 바이오오일의 화학적 성분분석을 위해 GC-MS를 이용하였다. 분석 전 전처리 용매(Ethyl acetate)를 사용하였으며, 수분제거는 Na2SO4로 충분히 제거하였다. 실험 결과 회수된 바이오오일의 수득률은 무촉매에서 42 g, 각각 촉매 41 g(Ca), 38 g(Mg)이다. 각 촉매의 영향으로 Phenolic compounds, Furan 등을 분석하여, 바이오 오일의 화학적 질적향상을 평가한다.
        15.
        2014.11 서비스 종료(열람 제한)
        현재 화석연료의 매장한정량에 따른 고갈가능성과 환경적 문제에 대한 위기감이 높아짐에 따라 대체에너지원의 필요성이 더욱 높아지고 있다. 대체 에너지원 중 하나인 바이오매스는 에너지원과 화학물질 원료로서 이용 가능하며 이에 대한 연구가 활발히 진행되고 있다. 바이오매스는 지속가능한 자원이며 탄소중립적인 특징을 가진다. 또한, 유기성화합물로 이루어져 있어 화석연료를 대체할 수 있는 에너지원으로 각광받고 있다. 바이오매스 이용을 위한 열화학적 변환 공정으로는 연소, 가스화, 열분해 방법이 있다. 열분해방법은 무산소 조건, 400~600℃ 하에서 열적분해가 일어나는 공정으로 고형분인 바이오촤, 바이오오일, 바이오가스를 얻을 수 있다. 액상인 바이오 오일은 다양한 유기화합물이 혼합되어 있는 상태로 이를 분리하여 화학물질의 원료, 수지합성, 의약품, 유기용매로의 이용 가능성이 매우 높다. 바이오오일의 분리방법으로 용매추출법, 분자증류법, column chromatography 외에도 다양한 연구가 진행되고 있다. 이번 연구에서는 바이오오일 유용물질 회수를 위한 기초실험으로 용매추출법을 이용한 상분리 실험을 진행하였다. 본 연구에서는 폐톱밥을 원료로 느린 열분해를 통해 생성된 바이오오일의 상분리 실험을 진행하였다. 선행 실험을 통해 셀룰로오스로부터 유도되는 유용 물질중 하나인 Furfural 생성 최적 조건을 찾은 후 극성이 다른 용매를 선택하였다. 용매와 바이오오일의 부피비는 1:1로 설정하였으며 상분리 결과는 GC/MS로 분석하였다. 각 용매와 분리 조건에 따른 soluble, insoluble 상의 결과를 GC/MS를 통해 비교하였다. Furfural 및 기타 유용물질 분리에 적합한 용매를 선정하였으며 주요 유기물질 회수방안에 대한 연구를 진행하였다.
        16.
        2014.11 서비스 종료(열람 제한)
        신재생에너지의 종류에는 수소에너지, IGCC, 연료전지, 바이오에너지 등 여러 종류가 있지만, 기존의 화석연료를 대체할 수 있는 에너지는 바이오매스가 유일하다. 바이오매스는 광합성 과정을 통해 체내 이산화탄소를 축적하므로 대기 중의 이산화탄소 농도를 변화시키지 않아 기후변화 완화에 기여를 하고 있다. 바이오오일은 수송용 연료로 사용이 가능하고 그 외에 다양한 화학물질들이 존재하여 화학시장의 새로운 플랫폼이 될 수 있는 자원으로 인식되고 있다. 바이오오일을 만드는 방법은 여러 가지가 있지만 열분해는 가장 간단하면서도 다양한 물질이 생성되어 그 활용가치가 매우 높다. 열분해 후에는 바이오촤, 바이오 오일, 바이오가스가 생성되는데 이번 연구에서는 바이오 촤와 바이오 오일의 분석에 집중하였다. 생성된 바이오오일은 탄화수소 계열 화학물질 외에 다양한 유기화합물이 존재하는데 화학산업의 기초가 되는 유기물질들이 다량 존재한다. 바이오촤는 활성탄으로 사용이 가능하고 석탄을 대체할 연료로 고려되고 있는 단계로 가치가 높게 받아들여지고 있다. 본 연구에서는 목재 펠릿 제조 후 남는 폐 톱밥을 이용하였고 화학 처리는 되지 않았다. ZSM-5 촉매를 사용하여 열분해를 진행하였고, Si/Al ratio가 다른 촉매를 이용하여 최적의 촉매와 조건을 찾아내었다. 촉매와 폐톱밥을 균질하게 섞어 촉매 반응이 원활하게 진행되도록 유도하였고 생성되는 바이오촤와 바이오 오일에 촉매의 영향이 있는지 확인하였다. 대조군으로 무촉매 조건을 두었는데 이 때 온도는 350, 400, 450, 500, 550℃로 변화를 주며 실험을 진행하였다. 촉매 조건에서는 400, 500℃로 실험을 진행하였다. 열분해하여 나오는 생성물을 성상별로 분류하여 고체와 액체 물질이 어느 촉매 조건에서 많이 나오는지 비교하였다. 바이오 촤는 질량비교와 원소분석을 이용하여 분석하였고 바이오 오일은 질량 비교와 GC-MS를 이용하여 분석하였다.
        17.
        2013.11 서비스 종료(열람 제한)
        전 세계적으로 화석연료의 고갈에 대비함에 따라, 대체에너지의 개발을 위한 다양한 친환경 화학제품 및 에너지생산에 대한 연구들이 활발히 진행되고 있다. 국내에서는 저탄소 녹색성장이라는 슬로건 아래 출범한 정부를 시작으로 현재까지 대체에너지를 개발하기 위한 연구는 계속되고 있으며, 이에 따라 신재생에너지의 중요성이 인식되고 있다. 특히 국내의 경우, 신재생에너지의 약 80% 이상을 폐기물 및 바이오매스 에너지가 차지하고 있으며, 향후에도 더 많은 에너지공급을 위하여 활발한 연구가 진행될 것으로 예상된다. 그러나 국내에는 활용가능한 바이오매스 자원은 매우 한정적이며 2030년 바이오에너지 공급 계획 3.4%에 맞추기 위해서는 안정적인 바이오매스의 확보와 활용기술 개발이 필수적이다. 따라서, 기술개발 초기단계부터 풍부한 아열대성 기후 지역 국가로부터 저렴한 원료를 확보하여 개발하는 것이 필수적이라고 판단된다. 최근 팜 오일에 대한 수요가 급증함에 따라 말레이시아와 인도네시아를 중심으로 팜 오일 산업이 활성화되고 있으며, 이에 따라 팜 오일 생산공정으로부터 다양한 다량의 부산물이 발생하고 있는 실정이며, 본 산업은 지속적으로 증가하여 태국을 포함한 여러 나라에서도 팜 오일 생산을 늘리고 있다. 특히, 팜 열매인 fresh fruit bunch (이하 FFB)로부터 발생하는 부산물인 empty fruit bunch(이하 EFB)는 전체양의 20%를 차지할 정도로 다량발생되고 있으며, 현지에서도 이에 대한 적절한 처리방안이 없어 단순히 야적되거나 소각 또는 비료로써 처리되고 있기 때문에 이를 활용하면 바이오매스 자원이 부족한 우리나라의 경제적인 바이오매스 자원확보의 대안이 될 수 있다. 따라서 연구에서는 팜 오일 산업부산물 중 하나인 EFB를 목질계 바이오매스로써 활용하여 바이오 오일을 회수하고자 기초특성분석을 수행하여 열화학공정으로의 적용가능성에 대하여 평가하였다. 또한 이 결과를 바탕으로 목질계 바이오매스에 적절한 급속열분해를 선정하여 유동층 반응기에서의 열분해 특성을 연구하였다. 이는 TG 분석 결과를 바탕으로 온도범위를 400 ~ 650℃로 설정하여 각 온도구간 마다 바이오오일을 회수하여 수율을 측정하였고, 500℃ 부근에서 가장 높은 수율을 보였다. 또한 바이오오일에 대한 발열량, pH, 점도 등을 분석하여 연료로써의 가능성을 평가하였다.
        18.
        2013.11 서비스 종료(열람 제한)
        에너지 수요의 증가와 환경문제에 대한 중요성을 인식하면서 신재생에너지에 대한 연구가 주목받고 있다. 정부의 지원 정책과 원유 가격 불안정성 등의 이유로 국내에서도 활발한 연구가 진행 중이다. 신재생에너지의 종류에는 태양광, 풍력, 수력, 연료전지 등의 다양한 분야가 있지만 우리가 사용하고 있는 수송용 연료를 대체할 에너지는 바이오 오일이다. 미국과 브라질, 중국 등의 식량 부국에서는 옥수수, 사탕수수 등의 식량을 화학적 처리과정을 거쳐 바이오 연료로 생산하고 있다. 하지만 식량자원 빈국에 대한 도덕적 문제를 야기하였고 폐셀룰로오스를 이용한 바이오연료 생산이 각광받고 활발하게 연구가 진행 중이다. 바이오오일을 만드는 방법은 여러 가지가 있으나 열분해를 통한 바이오오일 생산이 간단한 과정이고 시간이 오래 걸리지 않으며 많은 양을 만들어 낼 수 있는 장점을 가지고 있다. 본 연구에서는 주변에서 쉽게 볼 수 있는 폐셀룰로오스의 하나인 톱밥을 이용하여 열분해를 진행하였고 수분의 제거를 위해 톱밥은 오븐에서 75℃로 하루 이상 건조하였다. 화학적 처리가 되지 않은 톱밥을 이용하였고 반응 온도를 400, 450, 500, 550℃로 달리하여 실험을 진행하였다. Carrier gas는 N₂를 사용하였고 150cc/min의 유량으로 흘려주어 가스가 컨덴서로 이동하게 하였다. 열분해하여 나오는 생성물을 성상별로 분류하여 액체 물질이 어느 온도 조건에서 많이 나오는지 비교하였다. 분석방법은 바이오오일을 GC(Gas Chromatography)와 Elemental analyzer로 분석하였고 어느 온도 조건에서 탄화수소와 유가물질들이 많이 나오는 지 분석하였다.
        1 2