검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 77

        1.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling. METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
        4,000원
        2.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to 1,000 oC heat.
        4,000원
        3.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high N2 and O2 concentrations, laboratory conditions and high CO2 conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high CO2. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.
        4,200원
        4.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고로슬래그는 유동성 장기강도 및 내구성이 좋고 수화열을 낮아 경화체를 제조함에 따른 적용성이 우수하지만, 몇 가지 문제점을 갖는다. 시공시간이 증가하고 회전속도가 늦고 초기강도가 낮다. 본 연구에서는 알칼리활성화를 이용한 경화체 제조에 있어 필요한 알칼리 수용액을 해수담수화 과정에서 발생하는 농축수의 전기분해를 통하여 공급하였으며. 알칼리 수용액을 이용하여 고로슬래그와 경화체를 제작하였다. 결과는 다음과 같이 요약할 수 있다 : 모르타르의 압축강도는 NaOH 2%이하일 때는 감소하고, 6% 이하까지는 증가한다. 그리고 NaOCl의 함량이 증가할수록 압축강도도 증가한다. 그러나 NaCl이 모르타르에 존재하면 초기강도보다 재령 28일차 강도는 감소하게 된다.
        4,000원
        5.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.
        4,000원
        6.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study blast furnace slag, an industrial byproduct, was used with an activating chemicals, Ca(OH)2 and Na2SiO3 for carbon capture and sequestration as well as strength development. METHODS: This paper presents the optimized mixing design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. RESULTS : The influencing factors of experimental are water ratio, Chemical admixture ratio and Curing temperature. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for Carbon-Capturing and Sequestering Activated Blast- Furnace Slag Mortar were water ratio 40%, Chemical admixture ratio 58.78% and Curing temperature of 60℃. CONCLUSIONS: Compared with previous studies of this experiment is to some extent the optimal combination is expected to be reliable.
        4,000원
        7.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : To investigate the fundamental characteristics of blast-furnace slag mortar that was hardened with activating chemicals to capture and sequester carbon dioxide. METHODS : Various mix proportions were considered to find an appropriate stregnth development in regards with various dosages of activating chemicals, calcium hydroxides and sodium silicates, and curing conditions, air-dried, wet and underwater conditions. Flow characteristics was investigated and setting time of the mortar was measured. At different ages of 3, 7 and 28days, strength development was investigated for all the mix variables. At each age, samples were analyzed with XRD. RESULTS : The measured flow values showed the mortar lost its flowability as the activating chemicals amount increased in the scale of mole concentration. The setting time of the mortar was relatively shorter than OPC mortar but the initial curing condition was important, such as temperature. The amount of activating chemicals was found not to be critical in the sense of setting time. The strength increased with the increased amount of chemicals. The XRD analysis results showed that portlandite peaks reduced and clacite increased as the age increased. This may mean the Ca(OH)2 keeps absorbing CO2 in the air during curing period. CONCLUSIONS : The carbon capturing and sequestering activated blast-furnace slag mortar showed successful strength gain to be used for road system materials and its carbon absorbing property was verified though XRD analysis.
        4,000원
        8.
        2008.03 구독 인증기관 무료, 개인회원 유료
        Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properies such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical reslstance. However, furnace slag powder is not self-hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcíum hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate mortar using furnace slag and analyze its performance based on the results of an experiment, to provide materials on mortar using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.
        4,000원
        11.
        2022.03 KCI 등재 서비스 종료(열람 제한)
        본 연구는 원자력 시설 해체 시 발생되는 저준위 및 극저준위 폐토양, 점토와 산업부산물인 고로슬 래그를 이용하여 방사성 폐기물을 안전하게 담지할 수 있는 비소성 시멘트의 제조 가능성을 평가하고 광물· 형태학적 분석을 통하여 생성된 반응 물질에 대하여 고찰하였다. 본 연구에서는 (1) 폐토양, 점토 및 고로슬 래그의 특성 분석, (2) 폐토양, 점토 및 고로슬래그를 고화재 및 성분조정제로 이용한 원전 해체 폐기물 담지를 위 한 비소성 시멘트 제조 및 최적의 배합 비율 도출, (3) 제조된 비소성 시멘트 고화체의 수화반응 생성물질에 대하여 광물·형태학적 분석 등을 수행하였다. 비소성 시멘트 고화체의 광물·형태학적 분석 결과, 폐토양과 점 토는 수화반응 생성물이 관측되지 않았으며, 고로슬래그의 경우 고화체의 강도를 발현시킬 수 있는 수화반응 생성물질인 calcium silicate hydrate (CSH), 에트링가이트(ettringite)가 생성되는 것을 확인하였다. 폐토양, 점 토를 고화재로 이용한 비소성 시멘트의 재령 28일 후 고화체는 최적의 배합 비율에서 약 3 MPa의 강도를 나 타내 처분장 인수기준 압축강도인 3.44MPa를 만족하지 못하는 것을 확인하였다. 그러나, 고로슬래그를 고화 재로 이용한 비소성 시멘트는 모든 실험 조건에서 처분장 인수기준 압축강도를 만족하며, 최적의 배합 비율 에서는 약 27 MPa로 높게 나타나는 것을 확인할 수 있었다. 이러한 결과를 통하여 비소성 시멘트 고화재로 고로 슬래그, 방사성 핵종에 대한 흡착제 역할로 폐토양 및 점토를 이용한다면 방사성 폐기물 처분을 위한 최적의 비소성 시멘트를 제조할 수 있을 것으로 판단된다.
        12.
        2019.04 서비스 종료(열람 제한)
        In this study, the mechanical properties of concrete incorporating blast furnace slag with 60 % were analyzed according to CBS-Dust replacement rate. Results indicate that replacement of more than 10 % of CBS-Dust have a positive effect on reducing waste disposal costs and strength improvement
        13.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        스트론튬계 상전이물질은 특정한 온도에서 물질의 상태가 변함에 따라서 열을 흡수하거나 방출하게 된다. 본 연구의 목적은 스트론튬계 상전이물질의 혼입이 플라이애시 치환 모르타르 및 고로슬래그 치환 모르타르의 수화발열 및 역학적 특성에 미치는 영향을 실험적으로 평가하는 것이다. 스트론튬계 상전이물질의 혼입량은 결합재 질량의 1, 2, 3, 4, 5%로 하였다. 총 12개 수준의 모르타르 배합에 대해서 모르타르 흐름성능, 간이수화열온도상승, 압축 및 휨강도 실험을 각각 수행하였다. 실험결과 본 연구에서 사용한 스트론튬계 상전이물질은 모르타르의 수화열 저감 및 수화지연에 효과적인 것으로 판단된다. 특히 플라이애시 치환 모르타르의 최대온도 상승량은 고로슬래그 치환 모르타르의 최대온도 상승량에 비해 낮게 나타났다. 플라이애시 및 고로슬래그 치환 모르타르의 압축강도는 상전이물질 혼입량이 증가함에 따라 감소하는 것으로 나타났다.
        14.
        2018.10 서비스 종료(열람 제한)
        This study is to perform experiment of concrete according to addition of blast furnace slag powder and sulfur activator dosages. Blast furnace slag powder used at 30, 50, 80% replacement by weight of cement, and liquid sulfur additives was chosen as the alkaline activator. As a result, it should be noted that the sulfur alkali-activators can not only solve the disadvantage of blast furnace slag concrete but also offer the chloride resistance of alkali-activated blast furnace slag concrete to blast furnace slag concrete.
        15.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        This study investigated the concentration of heavy metals in blast-furnace slag cement by changing the content ratio between blast-furnace slag and ordinary Portland cement for the safe recycling of blast-furnace slag in the cement industry. The analysis of the three main materials of the cement (ordinary Portland cement, blast-furnace slag, and the alternative raw materials), resulted in the ordinary Portland cement having the highest concentration of heavy metals. Also, it is concluded that the heavy metal content of blast-furnace slag cement is mainly attributed to the content of ordinary Portland cement. As the content of furnace slag during the manufacture of cement increases, the overall heavy metal content of the furnace slag cement becomes low. This was highly evaluated as a resource in the cement-production process, in respect of the effective recycling of resources and the safe management of hazardous materials.
        16.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to verify safe and environmentally-sound recycling of blast-furnace slag in the cement industry. This was accomplished by analyzing the heavy metal contents of three kinds of raw materials: blast-furnace slag, Portland cement, and the substitutes, which were mainly input into the manufacture of cement. The research revealed that, in the five samples tested, the heavy metal level in the blast-furnace slag cements (5.90 ~ 8.38 mg/kg for Cr6+) is lower than the ordinary Portland cement (11.04 ~ 14.92 mg/kg for Cr6+). This suggests that both raw materials have low heavy metal contents compared with the 20 mg/kg limit enforced by the autonomic convention in Korea. As for the substitutes, there was no decisive effect on the overall heavy metal content because of the low input ratio of 2.5%. Therefore, it is of high utility value to recycle the blast-furnace slag in the cement industry, considering slag can dilute the overall heavy metal contents in the cement products.
        17.
        2017.11 서비스 종료(열람 제한)
        시멘트 산업에서는 폐자원의 재활용과 비용절감 및 생산 효율성을 증가시키기 위하여 고로슬래그, 석탄재, 폐수처리오니, 폐타이어, 폐합성수지 등 다양한 폐기물이 보조연료 및 대체원료로 사용되고 있다. 그러나 이로 인하여 시멘트 제품의 유해성, 주변 환경 영향 등에 대한 논란을 유발하고 있다. 이에 따라 시멘트 제품의 품질의 안전성과 환경 유해성에 대한 사회적 논란을 해소하기 위해서 시멘트 중 육가크롬을 20 mg/kg으로 관리 중이며, 육가크롬을 포함하여 6개 중금속(Cr6+, As, Cu, Cd, Pb, Hg)에 대하여 매월 모니터링 중이다. 모니터링에 분석되는 시멘트는 보통 포틀랜드 시멘트를 대상으로 함에 따라 다른 종류의 시멘트에 대한 중금속 함유량을 파악할 필요성이 있다. 따라서 본 연구에서는 고로슬래그를 이용한 고로슬래그 시멘트에 대한 중금속 함유특성을 파악하고자 하였다. 그 결과 고로슬래그 시멘트의 경우 대부분 고로슬래그와 보통 포틀랜드 시멘트가 50 % : 50 %로 혼합하여 생산되고 있었으며, 고로슬래그가 혼합됨에 따라 중금속 함유량이 낮아지는 것을 파악하였다. 또한, 공사현장에서 초기 강도가 낮은 단점이 있으나 자원 재활용 및 유해물질 안전관리 측면에서 볼 때 고로슬래그 시멘트의 사용은 부가가치 및 환경성이 높다고 평가된다.
        18.
        2017.09 서비스 종료(열람 제한)
        Recently, a method of using blast furnace slag to reduce the amount of cement which generates a large amount of carbon dioxide during the manufacturing process has been studied. Blast furnace slag is a latent hydraulic property material and requires the use of alkali activator. However, alkali activator is expensive and have problems in use. Therefore, in this study, an alkali aqueous solution was used instead of an alkali activator. The alkaline aqueous solution used in this study was obtained by electrolysis of pure water and has strong alkalinity of pH12. As a result, we found that the use of alkali aqueous solution is effective in improving the reactivity of blast furnace slag.
        19.
        2017.04 서비스 종료(열람 제한)
        The purpose of this study was to evaluate flowability of engineered cemetitious composite(ECC) Using blast furnace slag and fly ash as a binder in mixture. From the test result, flowability value of all ECC mixtures show good flowability and self compacting performance.
        20.
        2017.04 서비스 종료(열람 제한)
        In general, polymer cement mortars that is made from organic polymer dispersion and cement have good workability compared with ordinary cement due to ball-bearing acting of polymer particles in cement mortar. The purpose of this study is to evaluate the workability of cement mortar according to adding of admixtures such as polymer dispersions, blast-furnace slag and fly ash. From the test results, the flow of polymer-modified mortars is increased with increasing polymer-cement ratio, and also is a little improved according to adding of fly ash compared to blast-furnace slag.
        1 2 3 4