검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
        4,000원
        2.
        2023.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal’s collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.
        4,000원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to its excellent processability, thermal conductivity and high corrosion resistance, copper tubes applied to heat exchangers are being joined through brazing to increase heat exchange efficiency. In order to improve performance, the issue of joint quality of copper tubes, a major member of heat exchangers, is emerging, so research is needed to obtain excellent joint quality of brazing joints that may be damaged. In this study, the quality change of joints according to process variables was studied through induction heating brazing experiments using high frequency. The depth of penetration, which indicates the quality of the junction, was measured, and the center position of the high-frequency electrode and the height of the electrode, which change the location of the heat source applied to the junction, were selected as process variables. Lastly, the thermal image data obtained between the brazing experiments were obtained and the joint quality according to the temperature gradient of the joint was analyzed.
        4,000원
        4.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.
        4,000원
        5.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In aluminum brazing processes, corrosive flux, which is used in preventing oxidation, is currently raising environmental concerns because it generates many pollutants such as dioxin. The brazing process involving noncorrosive flux is known to encounter difficulties because the melting temperature of the flux is similar to that of the base material. In this study, a new brazing filler material is developed based on aluminum and non-corrosive flux composite powder. To minimize the interference of consolidation aluminum alloy powder by the flux, the flux is intentionally embedded in the aluminum alloy powder using a mechanical milling process. This study demonstrates that the morphology of the composite powder can be varied according to the mixing process, and this significantly affects the relative density and mechanical properties of the final filler samples.
        4,000원
        6.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.
        4,000원
        7.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A capsule is the device for irradiation test of nuclear materials and fuels in HANARO. The instrumentation cables are sealed tightly by brazing at the top of the capsule. In this study, the integrities at the brazing of both Inconel 600 and STS 310 materials were confirmed by tensile test, survey of damage on coating, and measurement of insulation resistance. At tensile test, brazing areas were not damaged but the thermocouples themselves were broken on both the materials. At flame heat test, the coating of STS 310 material was maintained without damage but the brittle fracture on Inconel 600 material was observed. Insulation resistances were confirmed to be satisfactory in case of both the materials. In this analysis, the thermocouple was expanded by 0.81mm on the direction of y-axis and the tube was contracted by 0.57mm on the direction of x-axis. As the result, cracks might be occurred with thermal stresses. EDX spectrum analysis showed that the BAg-1 filler metal formed a thin reaction layer on the surface of brazed metal.
        4,000원
        8.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at . Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 compared to 100 for electroless nickel-deposited NiO-YSZ cermet.
        4,000원
        9.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We studied on the high temperature brazing process of the titanium frame of spectacles using the tensile test apparatus. The titanium rods, 50 mm in length and 3 mm in diameter, were polished with #2000 emery paper and brazed using the high frequency induction brazing method. Morphologies and chemical compositions of pure titanium surface were observed using SEM and EDX. The chemical compositions were observed using AES in the brazed seam, brazed interface, base metal. The results obtained from this study were sumrnarized as follows. The tensile strength of titanium frame was measured 392.25 MPa at the brazing temperature 96o·c. The tensile strength of titanium frame was measured 398.65 MPa at the Ar gas injection speed 25 Q/min, temperature 96o·c. AES data for the brazed interface region showed that the diffusion of Ag, Cu and Zn occurred to the titanium.
        4,000원
        12.
        2006.09 구독 인증기관·개인회원 무료
        The purpose of this study was to examine the interfacial reaction between diamond grits and Ni-based, Ag-based, brazing filler metal, respectively. The morphology of the interface between diamond grits and Ni-based, filler metal exhibited a very good condition after this heat treatment. Cr-carbide and Ni-rich compounds were detected by XRD analysis in the vicinity of the interface between diamond grits and Ni-based, filler metal after vacuum induction brazing. Chromium carbide is considered to play an important role in the high bonding strength achieved between diamonds grits and the brazing alloy.
        13.
        2006.09 구독 인증기관·개인회원 무료
        The present study has shown that the effect of boron and phosphorus in Ni-Cr-Si-X alloy to interfacial reactions and bonding strength of diamond-steel substrate, and the influence of various construction parameters on the formation of the topography of the tool. And these factors are required to making a good brazed tool. The microstructures and phase change of the brazed region were analyzed into SEM, EDS. According to the electron probe microanalysis, while brazing, the chromium present in the brazing alloy segregated preferentially to the surface of the diamond to form a chromium rich reaction product, which was readily wetted by the alloy.
        14.
        2006.09 구독 인증기관·개인회원 무료
        We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.
        15.
        2006.09 구독 인증기관·개인회원 무료
        This research mainly focuses on the development of sinter brazing technology for improving the process related to belt pulley made by sinter hardening. As the machine process of belt pulley takes up more than half of the total manufacturing hours, we propose changing the process to pulley groove brazed and bonded with pulley disc by applying sinter brazing to belt pulley. With the new process, the belt pulley is expected to reduce manufacturing cost to 70% of the original process by applying the sinter brazing technology; and the belt pulley bound by sinter brazing only loses 10% bonding strength compared with the original process.
        16.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The brazing adhesion properties of Ag coated W-Ag electric contact on the Cu substrate have been investigated in therms of microstructure, phase equilibrium and adhesion strength. Precoating of Ag layer ( in thickness) on the contact material was done by electro-plating method. Subsequently the brazing treatment was conducted by inserting BCuP-5 filler metal (Ag-Cu-P alloy) layer between Ag coated W-Ag and Cu substrate and annealing at in atmosphere. The optimum brazing temperature of was semi-empirically calculated on the basis of the Cu atomic diffusion profile in Ag layer of commercial electric contact produced by the same brazing process. As a mechanical test of the electric contact after brazing treatment the adhesion strength between the electric contact and Cu substrate was measured using Instron. The microstructure and phase equilibrium study revealed that the sound interlayer structure was formed by relatively low brazing treatment at . Thin Ag electro-plated layer precoated on the electric contact ( in thickness) is thought to be enough for high adhesion strength arid sound microstructure in interface layer.
        4,000원
        1 2