검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 58

        1.
        2023.11 구독 인증기관·개인회원 무료
        The primary heat transport system consists mainly of the in-core fuel channels connected to the steam generators by a system of feeder pipes and headers. The feeders and headers are made of carbon steel. Feeders run vertically upwards from the fuel channels across the face of the reactor and horizontally over the refueling machine to the headers. Structural materials of the primary systems of nuclear power plants (NPPs) are exposed to high temperature and pressure conditions, so that the materials employed in these plants have to take into accounts a useful design life of at least 30 years. The corrosion products, mainly iron oxides, are generated from the carbon steel corrosion which is the main constituent of the feeder pipes and headers of this circuit. Typical film thickness on CANDU-PHWR surface is 75μm or 30mg/cm2. Deposits on PHWR tends to be much thicker than PWR due to use of carbon steel and also for the source of corrosion products available on the carbon steel surface. Degradation of carbon steel for the feeder pipes transferring the primary system coolant by flow-assisted corrosion in high temperature has been reported in CANDU reactors including Point Lapreau, Gentully-2, Darlington and Bruce NPPs. The formation of Fe3O4 film on a carbon steel surface reduces the dissolution rate of steel substantially. The protectiveness of the Fe3O4 film over the carbon steel is affected by the environmental factors and the operational parameters of the feeder pipes, including the velocity, wall shear stress, solution pH, temperature, concentration of dissolved iron, quality of solution, etc. For effective chemical decontamination of these thick oxides containing radionuclides such as Co-60, it is necessary to understand the corrosion behaviors of feeder pipes and the characteristics of oxide formed on it. In this work, we investigated the growth of oxide films that develop on type SA-107 Gr. B carbon steel in high temperature water and steam environment by scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GD-OES) for the quantification and the solidstate speciation of metal oxide films. This study was especially focused to set the experimental tests conditions how to increase the oxide thickness up to 50 m by changing the oxidation conditions, such as solution chemistry and thermo-hydraulic conditions both temperature and pressure and so on.
        2.
        2023.11 구독 인증기관·개인회원 무료
        Even though a huge amount of spent nuclear fuels are accumulated at each nuclear power plant site in Korea, our government has not yet started to select a final disposal site, which might require more than several km2 surface area. According to the second national plan for the management of high-level radioactive waste, the reference geological disposal concept followed the Finnish concept based on KBS-3 type. However, the second national plan also mentioned that it was necessary to develop the technical alternatives. Considering the limited area of the Korean peninsula, the authors had developed an alternative disposal concepts for spent nuclear fuels in order to enhance the disposal density since 2021. Among ten disposal concepts shown in the literature published in 2000’s, we narrowed them to four concepts by international experiences and expert judgements. Assuming 10,000 t of CANDU spent nuclear fuels (SNF), we designed the engineered barriers for each alternative disposal concept. That is, using a KURT geological conditions, the engineered barrier systems (EBS) for the following four alternative concepts were proposed: ① mined deep borehole matrix, ② sub-seabed disposal, ③ deep borehole disposal, and ④ multi-level dispoal. The quantitative data of each design such as foot prints, safety factors, economical factors are produced from the conceptual designs of the engineered barriers. Five evaluation criteria (public acceptance, safety, cost, technology readiness level, environmental friendliness) were chosen for the comparison of alternatives, and supporting indicators that can be evaluated quantitatively were derived. The AHP with domestic experts was applied to the comparison of alternatives. The twolevel disposal was proposed as the most appropriate alternative for the enhancement of disposal efficiency by the experts. If perspectives changes, the other alternatives would be preferred. Three kinds of the two-level disposal of CANDU SNF were compared. It was decided to dispose of all the CANDU spent nuclear fuels into the disposal holes in the lower-level disposal tunnels because total footprint of the disposal system for CANDU SNF was much smaller than that for PWR SNF. Currently, we reviewed the performance criteria related to the disposal canister and the buffer and designed the EBS for CANDU SNF. With the design, safety assessment and cost estimates for the alternative disposal system will be carried out next year.
        3.
        2023.11 구독 인증기관·개인회원 무료
        In our previous study, we developed a CFD thermal analysis model for a CANDU spent fuel dry storage silo. The purpose of this model is to reasonably predict the thermal behavior within the silo, particularly Peak Cladding Temperature (PCT), from a safety perspective. The model was developed via two steps, considering optimal thermal analysis and computational efficiency. In the first step, we simplified the complex geometry of the storage basket, which stored 2,220 fuel rods, by replacing it with an equivalent heat conductor with effective thermal conductivity. Detailed CFD analysis results were utilized during this step. In the second step, we derived a thermal analysis model that realistically considered the design and heat transfer mechanisms within the silo. We developed an uncertainty quantification method rooted in the widely adopted Best Estimate Plus Uncertainty (BEPU) method in the nuclear industry. The primary objective of this method is to derive the 95/95 tolerance limits of uncertainty for critical analysis outcomes. We initiated by assessing the uncertainty associated with the CFD input mesh and the physical model applied in thermal analysis. And then, we identified key parameters related to the heat transfer mechanism in the silo, such as thermal conductivity, surface emissivity, viscosity, etc., and determined their mean values and Probability Density Functions (PDFs). Using these derived parameters, we generated CFD inputs for uncertainty quantification, following the principles of the 3rd order Wilks’ formula. By calculating inputs, A database could be constructed based on the results. And this comprehensive database allowed us not only to quantify uncertainty, but also to evaluate the most conservative estimates and assess the influence of parameters. Through the aforementioned method, we quantified the uncertainty and evaluated the most conservative estimates for both PCT and MCT. Additionally, we conducted a quantitative evaluation of parameter influences on both. The entire process from input generation to data analysis took a relatively short period of time, approximately 5 days, which shows that the developed method is efficient. In conclusion, our developed method is effective and efficient tool for quantifying uncertainty and gaining insights into the behavior of silo temperatures under various conditions.
        4.
        2023.11 구독 인증기관·개인회원 무료
        During PIV (Physical Inventory Verification), the IAEA has been inspecting the CANDU-Type spent fuels using an optical fiber-based scintillation detector. KINAC has developed a new verification instrument to deal with problems of the existing one such as low sensitivity, heavy and large dimension, and inconvenience-in-use. Our previous studies focused on how to develop the new instrument and had not included its performance tests. Field tests were carried out recently at Wolsung unit 4 to evaluate performance of the existing and new instruments. The objective of this paper is to discuss background noise produced in the optical fiber signal cable itself. The verification equipment for the CANDU-type Heavy Water Reactor spent fuels uses a scintillation detector to bond a scintillation material to the end of an optical signal cable. At this time, the radiation signal obtained by a data acquisition system is the signal generated from the scintillator (p-terphenyl organic scintillator) and the optical signal cable ; The signal produced in the optical cable itself is background noise to degrade the spent fuel verification equipment. To characterize the background radiation noise, the spent fuel bundles at Wolsung Unit 4 were measured using the optical fiber cable without the radiation scintillator. This signal is generated by reaction of the optical cable and the radiation emitted from the spent fuel. From experimental results, it was observed that the background noise signal of the optical cable increased as the optical cable went down in the downward direction, because the cable length irradiated by the radiation increased with the optical cable area in the spent fuel storage pool. Difference in the background noise signal was dependent on the location of the vertical direction and the signal of the new optical cable was up to about 5 times higher than that of the existing cable. While, the new cable has the cross-section area about 3.2 times larger than the old cable. Our past studies showed that total signal amplitude – sum of signals generated from the scintillator and optical fiber - of the new verification instrument was at least about 15 times greater than that of the existing one. Considering the total signal and background noise signal, from this measured results, it was confirmed that the scintillator characteristics – in particular, light output and decay time – has a dominant impact on the signal sensitivity of the newly developed instrument. More details will be discussed at the conference.
        5.
        2023.11 구독 인증기관·개인회원 무료
        In KNF, fuel performance analysis modules were developed to predict the overall behavior of a fuel rod under normal operating conditions. Their main focus is to provide information on initial conditions prior to dry storage. Potential degradation mechanisms that may affect sheath integrity of spent CANDU fuel during dry storage are: creep rupture under internal gas pressure, sheath oxidation in air environment, stress corrosion cracking, delayed hydride cracking, and sheath splitting due to UO2 oxidation for a defective fuel. To upgrade the developed modules that address all the damage mechanisms, the first step was a review of the available technical information on phenomena relevant to fuel integrity. The second step was an examination of the technical bases of all modules, identify and extend the ranges of all modules to required operating ranges. The 300°C spent CANDU fuel sheath temperature metric for dry storage ensures spent CANDU fuel element integrity from the failure mechanisms of creep rupture, oxidation and stress corrosion cracking at a failure probability of 2×10-5 for a dry storage time of 100 years. The 300°C sheath temperature metric for dry storage has relatively a lower failure rate than the target criteria for dry storage of spent LWR fuel. Although different modes of failure were treated separately for simplicity, ignoring possible synergistic effects, these results are conservative because of the conservative assumptions that have been made for evaluating spent fuel element conditions, and because of the inherent conservatism of the applied models. Additional conservatism of the model comes from the fact that isothermal conditions do not prevail in actual storage conditions. Further R&D being considered includes acquisition of new functional models to implement overall fuel behavior evaluation and cover spent CANDU fuel in dry storage, and upgrades of the analysis module to achieve sufficient accuracy in key output parameters. The developed modules provide a platform for research and industrial applications, including the design of fuel behavior experiments and prediction of safe operating margins for spent CANDU fuel.
        6.
        2023.11 구독 인증기관·개인회원 무료
        A lot of CANDU Spent Fuels (CSFs) have been stored in spent nuclear fuel pools and dry storage facilities. In accordance with the enhanced nuclear regulations, the initial characteristics of CSF should be inspected to ensure the integrity of CSF and the reliable operation of storage system before loading it into a cask for long-term dry storage. For the inspections, an initial characteristics measurement equipment was designed, which is used for Pool-Side Examination (PSE) in the spent fuel pool of the pressurized heavy water reactor nuclear power plant. Measurements using the equipment consist of non-contact inspections and contact inspections. The non-contact inspections do not affect CSF integrity, whereas the integrity of CSF can be reduced during the contact inspections under abnormal operating conditions because the probe of equipment may apply specific loads to the CSF. Therefore, the structural integrity evaluations of equipment and CSF are performed using Finite Element (FE) analyses for four combinations based on two abnormal conditions and two probe positions. The used abnormal conditions are the pressing load condition and the scratching load condition, and two probe positions are the center and bottom of the fuel rod in the longitudinal direction, respectively. In this evaluation, the bottoms of the fuel rod or CSF are defined as the regions facing the bottom surface of equipment. The analysis of the pressing load condition is performed by pressing the probe of the equipment in radial direction of the CSF fuel rod. That of the scratching load condition is carried out by applying a specific radial load to the CSF fuel rod using the probe and then applying the load to the surface of the fuel rod while moving axially along the surface. All combinations are analyzed considering geometric, boundary and material non-linearity under the dynamic load, which is dependent on the equipment operating velocity. The stresses of CSF and equipment components were obtained from these analyses. The maximum stress of each component was generated at the combination on the scratching load condition for the bottom position among the four combinations. The obtained maximum stresses are lower than the yield stress for each component material. Also, the CSF is not overturned due to the support plate of the equipment in all analyses. Therefore, the structural integrity and safety of the equipment and the CSF are maintained under abnormal operating conditions during the inspection using the initial characteristic measurement equipment.
        7.
        2023.11 구독 인증기관·개인회원 무료
        The Agency needs to maintain a solid and reliable foundation for recruited inspectors by providing practical training at commercial nuclear power plants. The Comprehensive Inspection Exercise (CIE) is a basic training which consists of a simulation of a Design Information Verification (DIV) Visit, a Physical Inventory Verification (PIV) at a nuclear power plant, including Complementary Access. The basic curriculum includes a pre-course session, auditing exercises, fresh fuel (bundles and assemblies) measurements, spent fuel (bundles and assemblies) measurements, verification of design features, as well as nuclear material flow. ROK has been holding the lightwater reactor (LWR) / heavy-water reactor (CANDU) training course (CIE) from 2010 every year with about 2 weeks curriculum through MSSP (Member State Support Program). LWR and CANDU are operated by KHNP. To efficiently carry out the safeguards, IAEA receives the contribution through the ROK support program and implement R&D for the nuclear material inspection. ROK has been supporting and contributing total 22 tasks to IAEA in-cash and in-kind. Among them, this training provides for a course on safeguards verification activities at CANDU and LWR facilities. This course offers inspectors a unique opportunity to understand diversion scenarios and to familiarize themselves with instruments specifically used at CANDU and LWR facilities (OFPS and DCVD), as well as spent fuel dry storage transfer verification activities and dry storage dual sealing arrangements. KINAC performs PoC (Point of Contact) on behalf of NSSC and coordinates work between IAEA and KHNP. Additionally, KINAC first discusses with KHNP that can host light-water reactors and heavy-water reactors with KHNP at the beginning of each year. In order to hold a successful training, ROK plans and carries out a lot of process including agenda, accommodation, equipment movement, logistics and so on in consultation with the IAEA and facilities.
        8.
        2023.05 구독 인증기관·개인회원 무료
        Canada’s Pickering Unit 3 was performed a three-stage decontamination from June to August 1989 in preparation for pressure tube replacement. The first step was a reducing CAN-DECON treatment to dissolve the magnetic film inside the reactor, which was applied following partial defueling of the reactor core. The second step was an oxidative dilute alkaline permanganate treatment to remove the chromium-rich oxides of the stainless steel parts. And the final CAN-DECON step was applied continuously after completely removing fuel from the reactor core. In situ pipe gamma-ray spectroscopy techniques were applied to measure radioactivity within feeder piping during various stages of Pickering Unit 3 decontamination. Measurements were performed at a maximum dose rate of 5 mSv/h, and both the detector and the scanned feeder pipe were properly shielded from other neighboring pipes. 60Co was the dominant radionuclide in feeder piping prior to decontamination. And radionuclides 103Ru, 95Zr, 95Nb, 59Fe, 140La and 124Sb were detected. The Co-60 radioactivity was 2.09×105 Bq/cm2 before decontamination and 3.11×103 Bq/cm2 after decontamination in the inlet feeder pipe T18. And in the outlet feeder pipe P21, it is 2.56×104 Bq/cm2 before decontamination and 2.04×103 Bq/cm2 after decontamination.
        9.
        2023.05 구독 인증기관·개인회원 무료
        In-depth disposal of spent nuclear fuel means safe disposal of spent nuclear fuel by the concept of a multi-barrier system composed of an artificial barrier, an engineering barrier, and a natural barrier system of natural rock at a depth of less than 500 m underground. Disposal canisters are needed to store high-level waste in a deep environmental for a long time, and in order to demonstrate the performance of deep disposal canisters for spent nuclear fuel at underground research facilities (URL), it is intended to design disposal canisters and manufacture internal canisters. The internal canisters of spent nuclear fuel disposal canisters manufactured as a result of the study are combined with external copper canister technology and are directly used for demonstration of engineering barrier performance in underground facilities (URL) essential for final disposal of spent nuclear fuel. Disposal canister manufacturing technology and manufacturing process are used to manufacture disposal canisters for future final disposal projects in connection with domestic unique disposal systems. The quality inspection and quality management technology applied when manufacturing disposal canisters contribute to securing the soundness of disposal canisters that primarily maintain the safety of in-depth disposal by using them in the actual disposal business. By visually showing the development status of domestic disposal technology by displaying the prototype of disposal canisters manufactured as major achivements, the public can raise awareness of the domestic technology and safety of in-depth disposal of spent nuclear fuel.
        10.
        2023.05 구독 인증기관·개인회원 무료
        It is expected that around 576,000 bundles of CANDU spent nuclear fuels (SNF) will be generated from the four CANDU reactors located at the Wolsong site. The authors designed and proposed a reference disposal concept based on the KBS-3 type and KURT geological data in 2022. In addition, we have reviewed the literatures and selected four alternative disposal methods to develop the higherefficiency disposal concept than the reference concept since 2021. As known well, the most important safety functions of the geological disposal are containment and isolation, and the secondary function is retardation. A disposal canister covers the former, and buffer may do the latter. In this study, we design the engineered barrier systems for the four alternative concepts: (1) mined deep borehole matrix, (2) sub-seabed disposal, (3) deep borehole disposal, and (4) multi-level dispoal. Assuming total 10,000 tU of CANDU SNF, four different kinds of unit disposal module consisting of disposal canisters and compacted bentonite buffers are designed based on the technique currently available. Two alternative concepts, sub-seabed disposal and multi-level disposal, share the same unit module design with the reference concept in 2022. For all the alternative concepts, we assume that the density of the compacted buffer is 1.6 g/cm3. For the mined deep borehole matrix disposal, we introduce a disposal canister slightly modified from the Canadian NWMO canister with a capacity of 48 bundles. The thickness of a copper layer is changed to be 10 mm considering the long-term corrosion resistance. The buffer thickness around a disposal canister is 20 cm, and the diameter of a borehole is 100 cm. Two different kinds of buffer blocks are proposed for the easy handling of them. For the deep borehole disposal, a SiC-stainless steel canister is designed, and 63 bundles of CANDU SNF is emplaced in the canister. We expect that the SiC ceramic canister shows very excellent corrosion resistance and has a high thermal conductivity under the geological conditions. The deep borehole will be plugged with four layered sealing materials consisting of granite blocks, compacted bentonite, SiC ceramic, and concrete plugs.
        11.
        2023.05 구독 인증기관·개인회원 무료
        CANDU Spent Fuel (CSF) dry storage system, SILO, has been operated from 1992 at Wolsung under 50 year operating license. As of 2023, this system has been operated for over 30 years and its licensed remaining operation time is less than 20 years. When it faces the final stage of operation, it has only two options; moving to a centralized away-from-reactor storage or extending its license atreactor. These two options have an inevitable common duty of confirming the CSF integrity by a “demonstration test”. Since the degradation of CSF and structural materials in the SILO are critically dependent on temperature, two important goals of the ‘DEMO test’ were set as follows. 1. Design of ‘DEMO SILO’: Development of internal monitoring technology by transforming SILO design. 2. Accurate measurement and evaluation of the three-dimensional temperature distribution in the ‘DEMO SILO’ Based on operating real commercial SILO dimension, a conceptual “DEMO SILO” design has been developed from 2022. Because, unlike with commercial Silo, ‘Demo Silo’ must be disassembled and assembled, and have penetration holes. Safety evaluation technologies like structural, thermal and radiation protection analysis also have been developed with design work. ‘Demo SILO’ should evaluate an accurate 3D temperature distribution with minimal number of thermocouples and penetration holes to avoid disruption of internal flow and temperature distribution. For this reason, a ‘Best Estimate Thermal-Hydraulics evaluation system for SILO’ is under development and it will be essential for ensuring temperature prediction accuracy. Construction of a full-scale test apparatus to validate this technology will begin in 2024. In order to supply power to many heaters and monitor temperature gradient inside of this apparatus, it has modular design concept by dividing its whole body to axial 9 sub-bodies which looks like a donut containing a basket at center position.
        12.
        2023.05 구독 인증기관·개인회원 무료
        Spent fuel from the Wolsong CANDU reactor has been stored in above-ground dry storage canisters. Wolsong concrete dry storage canisters (silos) are around 6 m high, 3 m in outside diameter, and have shielding comprised of around 1 m of concrete and 10 mm of steel liner. The storage configuration is such that a number of fuel bundles are placed inside a cylindrical steel container known as a Fuel Basket. The canisters hold up to 9 baskets each that are 304 L stainless steel, around 42” in diameter, 22” in height, and hold 60 fuel bundles each. The operating license for the dry storage canisters needs to be extended. It is desired to perform in-situ inspections of the fuel baskets to very their condition is suitable for retrieval (if necessary) and that the temperature within the fuel baskets is as predicted in the canister’s design basis. KHNP-CNL (Canadian Nuclear Lab.) has set-up the design requirements to perform the in-situ inspections in the dry storage canisters. This Design Requirements applies to the design of the dry storage canister inspection system.
        13.
        2022.10 구독 인증기관·개인회원 무료
        It is expected that around 576,000 bundles of CANDU spent nuclear fuels (SNF) will be generated from the four CANDU reactors located at the Wolsong site, according to the 2nd National Plan for the management of High-Level radioactive Waste (HLW). The CANDU SNFs are currently stored at the dry storage facilities at the Wolsong site. The authors proposed KRS+ geological disposal system consisting of two different concepts, Swedish KBS-3V type and Canadian NWMO type, for the final management of CANDU SNF. Both the concepts were designed based on the geological data obtained from the KURT (KAERI Underground Research Tunnel). The NWMO type is an in-room horizontal placement method. In this study, we try to determine the reference concept among the two proposed concepts at 500 meters below the ground surface. Assuming 10,000 tU of CANDU SNF and the KURT site, we design two engineered barrier systems, that is disposal canisters and buffers. The copper disposal canister is designed with a copper thickness of 10 mm based on a cold spray coating technique for both the disposal concepts. The domestic Ca-bentonite is used for the compact bentonite buffer with dry density of 1.6 g/cm3. Two concepts are compared in terms of safety, economics of the engineered barriers, and environment-friendliness. Because the same amounts of CANDU SNF are disposed of at the same depth, the differences in the disposal area are neglected. For the comparison in terms of safety, the corrosion lifetimes of the disposal canisters of two disposal systems are quantitatively calculated, and the capacities for retarding radionuclide releases of the compacted bentonite buffers are assessed. A computer tool developed by the authors is used in order to assess the lifetime of a disposal canister. In this study, the case that corrosion of a copper canister by sulfide from groundwater through intact buffer is analyzed. The sulfide concentration in groundwater is assumed to be 3 ppm. The most important safety function of buffer is to retard the radionuclide release. Twelve long-lived radionuclides are selected to compare the capacities for retarding the radionuclide transport through the buffer using an analytical solution. The retention time by an engineered barrier consisting of a disposal canister and a buffer is compared with twenty times the half-life of each radionuclide for both the disposal systems. The selected reference concept will be compared with the alternative geological concepts through a further study.
        14.
        2022.10 구독 인증기관·개인회원 무료
        Maintaining fuel sheath integrity during dry storage is important. Intact sheath acts as the primary containment barrier for both fuel pellets and fission products over the dry storage periods and during subsequent fuel handling operations. In KNF, in-house fuel performance code was developed to predict the overall behavior of a fuel rod under normal operating conditions. It includes the analysis modules to predict temperature, pellet cracking and deformation, sheath stress and strain at the mid-plane of the pellet and pellet-pellet interfaces, fission gas release and internal gas pressure. The main focus of the code is to provide information on initial conditions prior to dry storage, such as fission gas inventory and its distribution within the fuel pellet, initial volumes of storage spaces and their locations, radial profile of heat generation within the pellet, etc. To upgrade the developed code that address all the damage mechanisms, the first step was a review of the available technical information on phenomena relevant to fuel integrity. Potential degradation mechanisms that may affect sheath integrity of CANDU spent fuel during dry storage are: creep rupture under internal gas pressure, sheath oxidation in air environment, stress corrosion cracking (SCC), delayed hydride cracking (DHC), and sheath splitting due to UO2 oxidation for a defective fuel. The failure by creep rupture, SCC or DHC is in the form of small cracks or punctures. The failure by sheath oxidation or sheath splitting due to UO2 oxidation results in a gross sheath rupture. The second step was to examine the technical bases of all modules of the in-house code, identify and extend the ranges of all modules to required operating ranges. This step assessed the degradation mechanisms for the fuel integrity. The objective of this assessment is to predict the probability of sheath through-wall failure by a degradation mechanisms as a function of the sheath temperature during dry storage. Further improvements being considered include upgrades of the analysis module to achieve sufficient accuracy in key output parameters. The emphasis in the near future will be on validation of the inhouse code according to a rigorous and formal methodology. The developed models provide a platform for research and industrial applications, including the design of fuel behavior experiments and prediction of safe operating margins for CANDU spent fuel.
        15.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Several countries, including Korea, are considering the direct disposal of spent nuclear fuels. The radiological safety assessment results published after a geological repository closure indicate that the instant release is the main radiation source rather than the congruent release. Three Safety Case reports recently published were reviewed and the IRF values of seven long-lived radionuclides, including relevant experimental results, were compared. According to the literature review, the IRF values of both the CANDU and low burnup PWR spent fuel have been experimentally measured and used reasonably. In particular, the IRF values of volatile long-lived nuclides, such as 129I and 135Cs, were estimated from the FGR value. Because experimental leaching data regarding high burnup spent nuclear fuels are extremely scarce, a mathematical modelling approach proposed by Johnson and McGinnes was successfully applied to the domestic high burnup PWR spent nuclear fuel to derive the IRF values of iodine and cesium. The best estimate of the IRF was 5.5% at a discharge burnup of 55 GWd tHM−1.
        4,200원
        16.
        2022.05 구독 인증기관·개인회원 무료
        PWR spent nuclear fuel generally showed an oxide film thickness of 100 um or more with a combustion rate of 45 MWD/MTU or higher, while CANDU spent nuclear fuel with an average combustion rate of about 7.8 MWD/MTU had few issues related to hydride corrosion. Even based on the actual power plant data, it is known that the thickness of the oxide film is 10 μm or less on the surface of the coating tube, and brittleness caused by hydride is shown from the thickness of the oxide film of about 80 μm, so it is not worth considering. However, since corrosion may be accelerated by lithium ions, lithium ions may be said to be a very important factor in controlling the hydro-chemical environment of heavy water. Lithium has a negative effect on the corrosion of zirconium alloys. However, since local below 5 ppb to prevent corrosion. maintained at a concentration between 0.35 and 0.55 ppm. Hydrogen is known to have a positive effect by suppressing radioactive decomposition of the coolant and suppressing cracks in nickelbased alloys. However, too much hydrogen can produce hydride in a pressure tube composed of Zr-2.5Nb, so DH (Disolved Hydrogen) maintains the range of 0.27–0.90 ppm. pH and conductivity are completely determined by lithium ions, and DH can be completely removed below 5 ppb to prevent corrosion. Therefore, for cladding corrosion simulation of the CANDU spent nuclear fuel, a hydrochemical of the equipment, not 310°C, and 14 uS·Cm−1 is targeted as conditions for corrosion acceleration. In addition, for acceleration, the temperature was set to 345°C (margin 10°C), which is the maximum accommodation range of the equipment, not 310°C.
        17.
        2022.05 구독 인증기관·개인회원 무료
        Prior to the investigations on fuel degradation it is necessary to describe the reference characteristics of the spent fuel. It establishes the initial condition of the reference fuel bundle at the start of dry storage. In a few technology areas, CANDU fuels have not yet developed comprehensive analysis tools anywhere near the levels in the LWR industry. This requires significantly improved computer codes for CANDU fuel design. In KNF, in-house fuel performance code was developed to predict the overall behavior of a fuel rod under normal operating conditions. It includes the analysis modules to predict temperature, pellet cracking and deformation, clad stress and strain at the mid-plane of the pellet and pellet-pellet interfaces, fission gas release and internal gas pressure. The main focus of the code is to provide information on initial conditions prior to dry storage, such as fission gas inventory and its distribution within the fuel pellet, initial volumes of storage spaces and their locations, radial profile of heat generation within the pellet, etc. Potential degradation mechanisms that may affect sheath integrity of CANDU spent fuel during dry storage are: creep rupture under internal gas pressure, sheath oxidation in air environment, stress corrosion cracking, delayed hydride cracking, and sheath splitting due to UO2 oxidation for a defective fuel. To upgrade the developed code that address all the damage mechanisms, the first step was a review of the available technical information on phenomena relevant to fuel integrity. The second step was an examination of the technical bases of all modules of the in-house code, identify and extend the ranges of all modules to required operating ranges. Further improvements being considered include upgrades of the analysis module to achieve sufficient accuracy in key output parameters. The emphasis in the near future will be on validation of the in-house code according to a rigorous and formal methodology. The developed models provide a platform for research and industrial applications, including the design of fuel behavior experiments and prediction of safe operating margins for CANDU spent fuel.
        19.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The domestic CANDU nuclear power plants have been operated for a long time and various unforeseen spent fuel defects have been discovered. As the spent fuel defects are important factors in the safety of the nuclear power plant, a study on the analysis of the spent fuel defects to prevent their recurrence is necessary. However, in cases where the fuel rods inside the fuel assembly are defected, it is difficult to dismantle the fuel assembly owing to their welded structure and the facility conditions of the plant. Therefore, it is impossible to analyze the spent fuel defect because it is difficult to visually check the shape of the fuel defect. To resolve these problems, an analysis technology that can predict the number of defected fuel rods and defect size was developed. In this study, we developed a methodology for investigating the root cause of spent fuel defects using a database of the earlier fuel defects in the plants. It is anticipated that in the future this analysis technology will be applied when spent fuel defects occur.
        4,000원
        1 2 3