검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 340

        41.
        2020.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dishwashing tools such as sponges, scourers, and dishcloths are known to harbor dense and diverse microbial communities, including pathogenic bacteria. In this study, the potential of corona discharge plasma jet (CDPJ) as a disinfectant was tested to improve the hygienic quality of dishwashing tools. For the simulation of microbial contamination, selective pathogenic bacteria (Escherichia coli O157:H7, Staphylococcus aureus, and Pseudomonas putida) were inoculated on selected dishwashing tools (dishcloth, sponge, and scourer) at concentrations of 6.55 to 8.77 log CFU/cm 2 . CDPJ generated at 20 kV voltage and 1.5A current was used for decontamination, whereas a sample-to-electrode distance of 25 mm was maintained during the treatment. Following CDPJ treatment for 5 min, the viable counts of E. coli O157:H7, S. aureus, and P. putida were reduced by 4.30-4.56, 3.71-4.78, and 3.50-3.83 log, respectively. The rates of inactivation were varied among the pathogens, decreasing in the order E. coli O157:H7 > S. aureus > P. putida. Among tested kinetic models, namely log-linear, log-linear with shoulder, and Weibull models, the log-linear with shoulder model was found to be the most suitable model to explain the CDPJ inactivation of the pathogens. In conclusion, CDPJ can be used as a potential sanitizing agent for dishwashing tools.
        4,000원
        44.
        2020.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examined the effects of freshwater discharge by artificial dikes from the Kanwol and Bunam lakes on the dynamics in the Chunsu Bay, Yellow Sea, Korea, during the summer season based on three-dimensional numerical modeling experiments. Model performances were evaluated in terms of skill scores for tidal elevation, velocity, temperature, and salinity and these scores mostly exceeded 90 %. The variability in residual currents before and after the freshwater discharge was examined. The large amount of lake water discharge through artificial dikes may result in a dramatically changed density field in the Chunsu Bay, leading to an estuarine circulation system. The density-driven current formed as a result of the freshwater inflow through the artificial dikes (Kanwol/Bunam) caused a partial change in the tidal circulation and a change in the scale and location of paired residual eddies. The stratification formed by strengthened static stability following the freshwater discharge led to a dramatic increase in the Richardson number and lasted for a few weeks. The strong stratification suppressed the vertical flux and inhibited surface aerated water mixing with bottom water. This phenomenon would have direct and indirect impacts on the marine environment such as hypoxia/anoxia formation at the bottom.
        4,300원
        45.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As water resources are limited and legal regulations are strengthened, there is a growing need to reuse residuals in WTP(Water Treatment Plant). In this study, membrane filtration system was constructed and its operation method was studied for water quality stabilization and reuse of WTP residuals. The operation parameters were stable for 1 year and 6 months. Membrane fouling was identified as particulate pollution (activated carbon) and inorganic pollution (manganese). The membrane system was operated steadily with raw water of high concentration SS(Suspended solid) containing activated carbon because membrane fouling was reduced by the effect of End-Free type. In the case of inorganic contamination, dissolved manganese eluted by chemicals and acted as a membrane fouling source, and the operating conditions for minimizing membrane fouling were confirmed by newly developing application methods and types of cleaning chemicals. Based on the results, design parameters for reducing manganese membrane fouling were derived.
        4,300원
        46.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the degradation characteristics and biodegradability of phenol, refractory organic matters, by injecting MgO and CaO-known to be catalyst materials for the ozonation process-into a Dielectric Barrier Discharge (DBD) plasma. MgO and CaO were injected at 0, 0.5, 1.0, and 2 g/L, and the pH was not adjusted separately to examine the optimal injection amounts of MgO and CaO. When MgO and CaO were injected, the phenol decomposition rate was increased, and the reaction time was found to decrease by 2.1 to 2.6 times. In addition, during CaO injection, intermediate products combined with Ca2+ to cause precipitation, which increased the COD (chemical oxygen demand) removal rate by approximately 2.4 times. The biodegradability of plasma treated water increased with increase in the phenol decomposition rate and increased as the amount of the generated intermediate products increased. The biodegradability was the highest in the plasma reaction with MgO injection as compared to when the DBD plasma pH was adjusted. Thus, it was found that a DBD plasma can degrade non-biodegradable phenols and increase biodegradability.
        4,000원
        47.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A zinc-air battery is one of most promising advanced batteries due to its high specific energy density, low cost, and environmental friendliness. However, zinc anodes in zinc-air batteries lead to several issues including self-discharge, corrosion reaction, and hydrogen evolution reaction (HER). In this paper, viscosity of electrolyte has been controlled to suppress the corrosion reaction, HER, and self-discharge behavior. Various viscosity average molecular weights of poly(acrylic acid) (PAA) are adopted to prepare the electrolyte. The evaporation of electrolytes is proportional to the increase in molecular weight. In addition, enhanced self-discharge behavior is obtained when the gelling agent with high molecular weight is used. In addition, the zinc-air cell assembled with lower viscosity average molecular weight of PAA (Mv ~ 450,000) delivers 510.85 mAh/g and 489.30 mAh/g of discharge capacity without storage and with 6 hr storage, respectively. Also, highest capacity retention (95.78 %) is obtained among studied materials.
        4,000원
        49.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Amine-functionalized graphene was synthesized via a one-step solvothermal method and used as a metal-free cathode for non-aqueous lithium–oxygen batteries. The material delivered an outstanding specific capacity of 19,789 mAh/g at a current density of 200 mA/g as well as better cycling stability than graphene without the amine functional group. This improvement was attributed to the electron-donating effect of the amine groups and appropriate mesopore volume, which can promote the penetration of oxygen, electrons, and lithium ions, as well as accommodate more discharge products, Li2O2 in Li–O2 batteries. Amine-functionalized graphene has an amine functional group on the carbon surface, which improves the electrical conductivity of carbon and provides electrochemical active sites for oxygen absorption reactions.
        4,000원
        56.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Benzo[α]pyrene (BaP), a carcinogenic polycyclic aromatic hydrocarbon, is ubiquitous in nature. It is generally found in heat-treated foods like roasted sesame seeds. BaP degradation has attracted attention due to the recalcitrant nature of BaP. In this study, corona discharge plasma jet (CDPJ) was used to degrade BaP on glass slides and in food materials. The plasma discharges were generated using air as working gas under atmospheric pressure conditions and at different currents (1.00, 1.25, and 1.50 A). Optimal BaP degradation was observed upon using CDPJ generated at 1.50 A current and at 15 mm sample-to-electrode distance (STED). Under these conditions, initial BaP concentration on slides was reduced maximally by 87.09% in 30 min. The degradation kinetics were well-fitted by Weibull tail model compared with others. In food commodities (roasted sesame and perilla seeds), the average levels of BaP degradation ranged between 32.96-45.90% following CDPJ treatment for 30 min.
        4,000원
        57.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sodium dodecylbenzen sulfonate (DBS) and linear alkylbenzene sulfonate (LAS) are widely used in dishwashing products. Residual levels of these surfactants are commonly found on the surfaces of dishware following dishwashing. Residual surfactants and detergents can act as potential toxicants and may pose health risks. This study explored the applicability of dielectric barrier discharge plasma (DBDP) for the degradation of residual surfactants in order to minimize their harmful effects. The plasma was generated using 10 kV pulsed DC power supply at different input currents (2.0-3.0 A) and at various inter-electrode gaps (2.0-3.0 mm). Under simulatory treatment conditions, diluted surfactants (DBS and LAS) and DBS-containing dishwashing detergents dispersed on slide glasses were exposed to DBDP for predetermined periods of time. Results indicated that, under optimal treatment conditions of 3.0 A current and 2.0 mm inter-electrode gap, tested surfactants and surfactants in detergents were degraded in the range of 60- 70% following the plasma treatment for 120 min. Modeling of degradation kinetics indicated that Weibull distribution was the best-fit model, and decimal degradation times (δ) were calculated. Pure surfactants were degraded at relatively higher level than surfactants in detergents. Among these anionic surfactants, DBS was more rapidly degraded than LAS by plasma treatment.
        4,000원
        58.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This objective of this study was to investigate the degradation characteristics of phenol, a refractory substance, by using a submerged dielectric barrier discharge (DBD) plasma reactor. To indirectly determine the concentration of active species produced in the DBD plasma, the dissolved ozone was measured. To investigate the phenol degradation characteristics, the phenol and chemical oxygen demand (COD) concentrations were evaluated based on pH and the discharge power. The dissolved ozone was measured based on the air flow rate and power discharged. The highest dissolved ozone concentration was recorded when the injected air flow rate was 5 L/min. At a discharge power of 40W as compared to 70W, the dissolved ozone was approximately 2.7 – 6.5 times higher. In regards to phenol degradation, the final degradation rate was highest at about 74.06%, when the initial pH was 10. At a discharged power of 40W, the rate of phenol decomposition was observed to be approximately 1.25 times higher compared to when the discharged power was 70W. It was established that the phenol degradation reaction was a primary reaction, and when the discharge power was 40W as opposed to 70W, the reaction rate constant(k) was approximately 1.72 times higher.
        4,000원
        59.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-level heteroatom, N and S, dual-doped graphene with an improved mesoporous structure was fabricated via facile in situ carbonization and used as metal-free cathode for non-aqueous lithium oxygen batteries. The prepared cathode delivered an ultrahigh specific capacity of 22,252 mAh/g at a current density of 200 mA/g as well as better cycling reversibility because of the larger and copious mesopores, which can promote the penetration of oxygen, electrons, and lithium ions and the ability to accommodate more discharge products, e.g., Li2O2, in Li–O2 batteries. The material had a high level of heteroatom co-doping in the carbon lattice, which enhanced the electrical conductivity and served as active sites for the oxygen reduction reaction.
        4,000원
        1 2 3 4 5