검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2018.04 구독 인증기관·개인회원 무료
        오미자를 가해하는 여러 해충 중 과피를 가해하는 볼록총채벌레를 대상으로 황색등에 대한 기피반응과 유인제에 대한 유인반응을 2017년 5월부터 8월까지 경북 문경시 동로면 소재 유기전환, 무농약, GAP 및 유기농 재배지에서 조사하였다. 황색등을 처리한 평지 및 경사지 모두에서 볼록총채벌레의 기피반응을 확인할 수 없었고 꽃노랑총채벌레 의 유인제로 사용하고 있는 p-anisic acid methyl ester에 대한 유인반응 또한 대조구와 비교했을 때 효과가 없는 것으로 조사되었다. 이러한 결과는 Derksen et al. (2016)이 언급한 것처럼 볼록총채벌레가 주행성(diurnal) 해충임을 의미하며 p-anisic acid methyl ester가 아닌 오미자가 발산하는 다른 향기물질(plant violates)을 이용한 유인제나 수컷이 방출하는 집합페로몬을 활용한 트랩 개발이 필요함을 제시하고 있다. 이러한 트랩 개발은 볼록총채벌레의 효과적인 예찰 및 대량포획에 도움이 될 것으로 판단된다.
        2.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 밀폐형 식물생산 시스템에서 다양한 형광등 종류에 따른 시금치 ‘수시로’의 생육과 기능성물질 함량에 미치는 영향을 구명하기 위해 수행되었다. 종자는 128구 플러그 트레이에 암면을 이용하여 파종되었다. 시금치 묘는 재순환 담액식 수경재배 시스템을 이용하여 EC 1.5dS·m-1, pH 6.5의 밀폐형 식물생산 시스템에 정식되었다. 묘는 3가지 종류의 형광등 #S(NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O( FHF32SSEX-D, Osram Co. Ltd., Germany), #P(FLR32SS EX-D, Philips Co. Ltd., The Netherlands)에 광도 150μmol·m-2·s-1 PPFD와 광주기 14/10 (명기/암기)으로 설정했다. 정식 후 재배환경은 온도 25±1oC와 상대습도 60±10% 였다. 정식 후 6주간 각 처리마다 30개체를 재배하였고, 생육 및 기능성 물질 함량을 3주째와 6주째 측정했다. 정식 후 3주째, #O 형광등에서 다른 처리구에 비해 초장과 엽폭이 유의적으로 컸다. 그러나 지하부의 생체중과 건물중은 #P 형광등에서 가장 높았다. 또한 총페놀 함량은 #P 형광등에서 유의적으로 가장 높았다. 정식 후 6주째, #O 형광등에서 초장, 지상부의 생체중 및 건물중에서 시금치의 생육이 향상되는 효과를 보였다. 총페놀 함량도 #O 형광 등에서 다른 처리구에 비해 유의적으로 증가하였다. 그러나 항산화 활성은 모든 처리구에서 유의적인 차이를 나타내지 않았다. 따라서 이러한 결과는 밀폐형 식물생산 시스템에서 #O 형광등 처리가 시금치의 생육과 기능성물질 함량 축적에 효과적인 것으로 나타났다.
        4,000원
        3.
        2016.10 구독 인증기관·개인회원 무료
        When L. ingenua was captured in a low density of less than 400 flies per sticky trap (25x15cm), yellow color trap is the most excellent, and pink color trap is the lowest. The other colors also have attraction abilities. On the other hands, when total mushroom flies are captured more than 1,000 flies, the attraction difference by the trap color has not been confirmed. Therefore, the use of yellow sticky trap was recommended for insect monitoring of L. ingenua and M. tamilnaduensis. 38.1% of L. ingenua and 31.7% of M. tamilnaduensis were attracted to the black light lamp. We confirmed that black fluorescent lamp(BL) will be effective material to attract two dominant mushroom fly at house(≒70㎡). The treatment of one device that is mushroom fly capturing device built-in black light fluorescent lamp decreases 67.8% of mushroom fly. And the treatment of two device decrease 90.4% of mushroom fly. When black fluorescent light lamp for capturing of mushroom fly only turned on during mushroom production room, Gonji-7ho and Heuktari grew up normally in all treatment. But yield of Chunchu-2ho was decreased 34.6% due to the lack of the amount of light in the treatment of black fluorescent light lamp to 100cm from mushroom medium.
        4.
        2017.05 서비스 종료(열람 제한)
        국내 자원의 절약과 재활용 촉진에 관한 법률에 근거한 생산자책임재활용제도(EPR System)의 대상 품목인 폐형광등은 2017년 기준 재활용 의무율은 35.6%로 책정되었으며 한국환경공단에 따르면 2015년 기준 형광등의 출고량은 약 18 천톤 정도로 나타났으나 공제조합과 재활용업 간의 재활용 위・탁 계약의 미체결로 인해 폐형광등의 실제 재활용율은 약 5.0%로 재활용 의무율을 달성하지 못하고 있는 실정이다(「생산자책임재활용제도 시행 13년」 운영성평가, 한국환경공단, 2017). 폐기물로 발생되는 폐형광등에 관한 선행연구에 따르면 폐형광등에 포함된 수은은 대부분 형광분말에 포함되어 있어 이를 적절하게 처리할 필요가 있다. 또한, 형광분말에는 희유금속(이트륨, 유로퓸 등)이 포함되어 있어 형광분말에 포함된 수은을 제거하여 희유금속을 회수하여 희유금속을 필요로 하는 산업체 등에서 활용할 수 있다. 이를 위하여 폐형광등 형광분말에 포함된 수은을 제거하기 위하여 Pilot plant 규모의 폐형광등 형광분말 증류 실험을 실시하였다. 실험의 원료는 경기도 K대학에 설치된 Pilot plant 규모의 폐형광등 재활용 공정에서 회수되는 폐형광등 형광분말을 사용하였다. Pilot plant 규모의 폐형광등 형광분말의 수은증류 실험의 조건으로 증류온도는 400~600℃로 변화시켰고 각 온도에서 증류장치 내 체류시간을 1~8시간으로 변화시켰다. 본 연구에서는 각 실험조건에서 회수되는 형광분말의 수은함량을 분석하였고 증류온도와 체류시간에 따른 수은함량을 비교하여 반응속도를 고찰하였다. 또한, 각 실험조건에서 소모되는 에너지양을 비교하여 Pilot plant 규모의 폐형광등 형광분말 증류장치의 최적 에너지 사용량을 평가하고자 하였다.
        5.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        Material flow analysis (MFA) of recycling material and of mercury from linear-type spent fluorescent lamps (SFLs was performed to estimate the material composition of the chain recycling process by an input-output approach. The recycling process system for linear-type SFLs was established using an end-cutting system, a hammer crusher, a screen separation system, a mercury distillation system, and an activated carbon adsorption component. From the results of the MFA of lineartype SFLs, 92% of materials used in linear-type SFLs such as glass, aluminum, and phosphor powder can be recycled. For MFA of mercury, the mercury content in the phosphor powder was the highest among material compositions tested and the total mercury amount in the recycling materials from 1 ton of SFLs was estimated to be 75.43 g. In the recycling process system for linear-type SFLs, the mercury amount in the vapor phase was analyzed and found to be 2228 mg in the endcutting system, 172 mg in the hammer crusher, and 2585 mg in the screen separation system. The total mercury amount in the vapor phase was estimated to be 4985 mg, which was only 6.22% of the total mercury amount emitted from the recycling process system. Hence, it was estimated that the MFA of the total mercury amount obtained from the vapor phase and the recycling materials of 1 ton of SFLs using the recycling process system was 80.175 g.
        6.
        2015.11 서비스 종료(열람 제한)
        일반 소형 형광등(Compact Florescent Lamp; CFL)(20W기준)에는 약 10%의 철금속(ferrous metal)이 존재한다. 철금속은 ‘리사이클링에 의한 생산량’ 을 ‘광석에 의한 생산량’ 으로 나눈 값인 리사이클링강도가 0.84로 타소재 알루미늄 0.39, 구리 0.08, 티타늄 0.02인 데 비해 압도적으로 높으며 철금속을 재활용하면 광물로부터 직접 철금속을 만드는 공정에 비해 이산화탄소 82%, 질소산화물 88.9%, 황산화물 94.7%을 줄일 수 있다. 또한 자연을 비교적 적게 파괴하면서도 쓰레기를 거의 남기지 않는 친환경적인 소재로 다른 소재 대신 철금속을 사용하면 사용할수록 환경보존에 도움이 되며 재활용도 용이해 경제성이 매우 뛰어나다. 본 연구는 폐형광등의 재활용 과정의 일부인 자력을 이용하여 자성물질인 철금속을 선별 및 회수 목적으로 자력 선별기를 개발하는 것이다. 수은이 제거된 폐소형 형광등(CFL)을 자력 선별기에 투입한 후 자력을 이용해 물리적으로 철금속을 단시간에 효과적으로 선별 및 회수할 수 있는 방법이다. 본 연구에서는 자력 선별기에 의한 시료의 투입속도에 따른 철금속의 선별 및 회수를 모니터링 하여 자력선별기의 선별효율을 평가하고자 하였다.
        7.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        Mercury distribution and hazardous characteristics of major components from SCFLs (Spent compact fluorescent lamps)for 3 lamp manufactures (A, B, C) are estimated by the analysis of mercury concentration and leaching tests such asKorean Extraction Test (KET) and Toxicity Characteristic Leaching Procedure (TCLP). SCFLs can be separated into glasstube, phosphor powder, metals, ballast, plastics, and binder. Through the analysis of mercury in major components forSCFL, mercury concentration in phosphor powder is much higher than that in other components regardless manufacturesof lamp. Also, mercury concentration in phosphor powder is dependent of the manufactures of lamp. From the leachingtests, all components except phosphor powder from 3 lamp manufactures are verified to be non-hazardous waste becauseall leaching concentrations are below the regulatory level. However, the leaching concentration of mercury in phosphorpowder of SCFLs is higher than the regulatory level in both KET and TCLP regardless manufactures of lamp. Hence,phosphor powder should be managed as a hazardous waste and should be separately managed to control mercury.
        8.
        2013.11 서비스 종료(열람 제한)
        Compact fluorescent lamps are strongly encouraged to manage separately in Korea because Compact fluorescent lamps contain mercury. Compact fluorescent lamps have managed as household waste in Korea, however, even though Compact fluorescent lamps contains hazardous material such as mercury. The aim of management of Compact fluorescent lamps separately is to reduce the release of mercury from Compact fluorescent lamp lamps into the environment and to reuse of the glass, metals and other components of Compact fluorescent lamps. The amount of mercury in a fluorescent lamps varies, depending on the type of lamp and manufacturer, but typically ranges between 5 milligrams and 30 milligrams. The mercury content of fluorescent lamps has been reported to be between 0.72 and 115 mg/lamp with an average mercury content of about 30 mg/lamp in 1994. Although manufacturers have greatly reduced the amount of mercury used in fluorescent lamps over the past 20years, mercury is an essential component to fluorescent lamps and can’t be eliminated completely in lamps. In the crushing process, CFL(compact fluorescent lamp) is separated into glass, plastic, ballast, phosphor powder and vapor. Using the crushing technique, concentration of mercury vapor emission from CFL is evaluated. Through the experiments, the efficiency of the crushing and separation for the unit is estimated by measuring the volume of CFL. In this study, the concentration of mercury is analyzed by MVI(Mercury Vapor Indicator) method for vapor in CFL. From the results of mercury distribution for 3 companies, the concentration of mercury in compact fluorescent lamp is less than that in the other type lamps. And phosphor powder has greater than 99% of total mercury amount in CFL and the mercury concentration in phosphor powder is measured between 1,008ppm and 1,349ppm. The mercury concentration in phosphor powder can be changed by the type of company and period of usage. KET and TCLP are carried out for phosphor powder, glass, plastic, ballast and base cap to estimate the hazardous characteristic. From the results of KET and TCLP test for CFL, phosphor powder from CFL should be controlled separately by stabilization or other methods to reuse as a renewable material because the phosphor powder is determined as a hazardous waste. From the results of characteristics of CFL, the carbonization system of CFL should be carried out in the temperature of less than 350℃. The amount of mercury in a fluorescent lamps varies, depending on the type of lamp and manufacturer, but typically ranges between 5 milligrams and 30 milligrams. The mercury content of Compact fluorescent lamps has been reported to be between 0.72 and 115 mg/lamp with an average mercury content of about 30 mg/lamp in 1994. Although manufacturers have greatly reduced the amount of mercury used in fluorescent lamps over the past 20years, mercury is an essential component to fluorescent lamps and can’t be eliminated completely in lamps. In Korea, demonstration for recycling of U type lamps had once begun in the area of Seoul Metropolitan, 2000. In 2004, U type lamps was included as an item in EPR(Extended Producer Responsibility) system. According to Korea Lighting Recycling Association, approximately 38 million Compact fluorescent lamps were recycled in Korea, 2011 because 3 recycling facilities for Compact fluorescent lamps are operated in Korea. Recycling rate of Compact fluorescent lamps in Korea is about 31.0% but about 70% of Compact fluorescent lamps may not manage properly. Hence, discarded lamps release approximately 2 to 3 tons of mercury per year into the environment[6]. In USA, Compact fluorescent lamps has controlled by Universal Waste Rule and merchandises containing mercury prohibited to produce. Also, MEBA(Mercury Export Ban Act) is activated in USA from 2013. According to Association of Lighting and Mercury Recycler, member companies accomplish about 85% of the lamp recycling done each year. In Germany, best available technology (BAT) system for recycling of Compact fluorescent lamps is established and about 20 companies are involved in recycling of Compact fluorescent lamps. In 1994, approximately 70-80% of total Compact fluorescent lamps are recycled in 1994 and Compact fluorescent lamps was included as an item in EPR(Extended Producer Responsibility) system in 1996. In Sweden, MRT System, which was developed by Lumalampan, separated mercury from Compact fluorescent lamps by distillation operation, 1979. Reverse route collection system is active to improve the collection of Compact fluorescent lamps. Compact fluorescent lamps was included as an item in EPR(Extended Producer Responsibility) system in 2001. In Austria, about 40 companies are involved in recycling of Compact fluorescent lamps to recycle glass and ferrous metals. And wastes containing mercury are treated in landfill site by using special container [7,8]. In this study, Compact fluorescent lamps is cut by a end-cutting unit with a cam crusher and base-cap is separated from glass part. In the end-cutting unit, a vacuum system is operating to collect mercury vapor to prevent leaking from the end-cutting unit. First of all, characteristics and major composition of Compact fluorescent lamps are estimated. Through the experiments, it is measured mercury concentration in the parts of Compact fluorescent lamps such as glass tube, phosphor powder, and base cap after separation in the end-cutting unit. Also, it is evaluated mercury emission from Compact fluorescent lamps by measuring the concentration of effluent gas in the end-cutting unit with changing flow rate. Finally, Korea Extraction Method (KET) and TCLP(Toxicity Characteristic Leaching Procedure) test are applied to phosphor powder to verify that phosphor powder is a hazardous waste [9].
        9.
        2013.11 서비스 종료(열람 제한)
        The estimated that 114 million units of fluorescent lamp are sold every year, and that 70% or more spent fluorescent lamps (SFLs) are generated at business sites. According to Korea Lighting Recycling Corporation, recycled amount of SFLs selected as EPR (Extended Producer Responsibility) items from 2004 has been improved from 35,250,000 units in 2010 to 37,950,000 units in 2011, which recorded the greatest amount. Based on the year 2011, SFLs have been recycled by 31.5%, but their recycled rate is insufficient yet, compared to the recycling rate of metal cans or glass bottles, which are about 80%. The base cap of SFLs as a raw material was used in this experiment. Base cap contains an insulation sieve plate, aluminum cap, copper terminal, tempered glass, filament, and copper/iron mixed wire that goes through this glass. In order to protect a filament that is made up of tungsten for the electricity to flow, circular plate consisted of iron encloses the filament. Separating apparatus of SFL base cap used in this experiment is a device which has used impact crushing technique using hammer, screen separation and magnetic separation for the purpose of recovering aluminum, copper and iron contained in SFL. Impact hammer crusher, a device that separates aluminum from other materials by hammer impaction on the base cap that is separated by end-cutting, causes a significant reduction for other materials to be included in the collectible materials by separating aluminum, copper and iron from the base cap by using hammer crusher at 3 stages. Iron was collected by using a magnetic separation unit and the collectible materials were separated into aluminum with larger particles, and glass and other materials with smaller particles by screen separation. The separation performance was estimated for the 3 stages of hammer crusher unit to recover aluminum from the base-cap of SFLs and the separation performances are 94% at the 1st stage, 97% at the 2nd stage, and 98% at the 3rd stage, respectively.
        10.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        Linear type SFL (spent fluorescent lamp) can be classified by 3-banded lamp and general lamp. Linear type SFL is separated by the end-cutting technique to examine the distribution of mercury in the major components such as base cap, glass part and phosphor powder. In this study, the concentration of mercury is analyzed by DMA (Direct Mercury Analysis) method for major components in linear type SFL. From the results of mercury distribution for 3 companies, the concentration of mercury in 3-banded lamp is less than that in general lamp. And phosphor powder has greater than 80% of total mercury amount in SFL and the mercury concentration in phosphor powder is measured between 1,250 ppm and 1,740 ppm. The mercury concentration in phosphor powder can be changed by the type of lamp, company, and period of usage. KET and TCLP are carried out for phosphor powder, glass, and base cap to estimate the hazardous characteristic. From the results of KET and TCLP test for general lamp and 3-banded lamp, phosphor powder from general lamp and 3-banded lamp should be controlled separately by stabilization or other methods to reuse as a renewable material because the phosphor powder is determined as a hazardous waste.
        11.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        본 연구는 실내에서 활용할 수 있는 분화식물인 엘라티올베고니아(Begonia xhiemalis) ‘Camilla’와 랜디제라늄(Pelargonium crispum) ‘Angeleyes Randy‘의 생육에 미치는 7가지 인공광원의 영향을 비교하고자 수행되었다. 식물체들은 fluorescent lamp(FL) tube-type(tube)+bulb-type(bulb), LED tube, FL tube+LED bulb, FL bulb+halogen lamp(HL), high pressure sodium lamp(HPS), metal halide lamp(MH), mercury lamp(MC) 단독 및 혼합광원 하에서 100일간 유지되었고, 환경조건은 온도 22±2℃, 광도 25±2μmol․m-2․s-1, 일장 16시간이었다. B. xhiemalis ‘Camilla’에 있어서 초장, 초폭, 엽수는 광원의 영향을 받지 않았으나, 엽록소 함량은 FL tube+LED bulb 혼합광에서 많았으며 HPS에서 적었다. 누적 꽃 수는 FL bulb+HL에서 91.8개로 가장 많았으며, MC 조사구에서 58.5개로 적었다. 화폭은 MH 단독광에서 4.8cm로 가장 컸으며, MC 처리구에서 3.6cm로 작았다. 생체중과 건물중은 MH 광원 하에서 가장 높았다. P. crispum ’Angeleyes Randy‘에 있어서 초장은 HPS 하에서 가장 길었고 다른 모든 광원들과 유의차가 있었으나, 초폭은 광원간 차이가 없었다. 엽록소 함량은 FL tube+LED bulb에서 가장 높았고 FL bulb+HL 혼합광, HPS 광원과는 처리간 유의차가 있었다. 누적 개화수에 있어서는 MH 단독광에서 71.3개로 가장 많았으며, FL (tube+bulb) 혼합광에서 50.6개로 가장 적었다. 화폭과 생체중은 광질별로 차이가 없었다. 건물중은 MH 하에서 높았으며 FL (tube+bulb)와는 차이가 있었다. 이상의 결과, 본 실험에 사용된 2종의 식물 생육은 인공광원 중에서 MH가 가장 적합한 보광원임을 알 수 있었다.