검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 145

        2.
        2023.11 구독 인증기관·개인회원 무료
        Since 1996, spent filters from the Kori unit 1 have been stored in enclosed areas such as the auxiliary building filter room. To dispose of these spent filters at a disposal facility, it is necessary to retrieve and package them according to the disposal criteria. The Kori unit 1 filter room is a 2.5- meter deep hole with 227 spent filters stored indiscriminately by type and radiation level. Furthermore, the exposure dose rate measurements revealed exceed 10 mSv/h, making it a challenging environment for workers. Therefore, in this study, we have developed a ‘Remote Processing System for Spent Filter Handling’ to minimize worker exposure and ensure safety throughout the entire process, from filter retrieval to radiation measurement, sample collection, compression, and packaging. We have completed performance testing through laboratory validation. The ‘Remote Processing System for Spent Filter Handling’ consists of four main components: a robot system for retrieving spent filters from the filter room, a transfer mechanism for moving spent filters to the lower area, a core ring device for sample collection, and finally, a compression/ packaging unit. The laboratory validation performance testing was conducted by installing these devices in a structure simulating the Gori-1 reactor filter room. The results confirmed that all processes, from spent filter retrieval to packaging, can be remotely operated without the need for filter drops or worker intervention. Through the laboratory validation, some areas for improvement were identified. These improvements should be taken into consideration when producing the system for future on-site applications.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear power plants use ion exchange resins to purify liquid radioactive waste generated while operating nuclear power plants. In the case of PHWR, ion exchange resins are used in heavy water and dehydration systems, liquid waste treatment systems, and heavy water washing systems, and the used ion exchange resins are stored in waste resin storage tanks. The C-14 radioactivity concentration in the waste resin currently stored at the Wolseong Nuclear Power Plant is 4.6×106 Bq/g, exceeding the low-level limit, and if all is disposed of, it is 1.48×1015 Bq, exceeding the total limit of 3.04×1014 Bq of C-14 in the first stage disposal facility. Therefore, disposal is not possible at domestic low/medium-level disposal facilities. In addition, since the heavy water reactor waste resin mixture is stored at a ratio of about 20% activated carbon and zeolite mixture and about 80% waste resin, mixture extraction and separation technology and C-14 desorption and adsorption technology are required. Accordingly, research and development has been conducted domestically on methods to treat heavy water waste resin, but the waste resin mixture separation method is complex and inefficient, and there are limitations in applying it to the field due to the scale of the equipment being large compared to the field work space. Therefore, we would like to introduce a resin treatment technology that complements the problems of previous research. Previously, the waste resin mixture was extracted from the upper manhole and inspection hole of the storage tank, but in order to improve limitations such as worker safety, cost, and increased work time, the SRHS, which was planned at the time of nuclear power plant design, is utilized. In addition, by capturing high-purity 14CO2 in a liquid state in a high-pressure container, it ensures safety for long-term storage and is easy to handle when necessary, maximizing management efficiency. In addition, the modularization of the waste resin separation and withdrawal process from the storage tank, C-14 desorption and monitoring process, high-concentration 14CO2 capture and storage process, and 14CO2 adsorption process enables separation of each process, making it applicable to narrow work spaces. When this technology is used to treat waste resin mixtures in PHWR, it is expected to demonstrate its value as customized, high-efficiency equipment that can secure field applicability and safety and reflect the diverse needs of consumers according to changes in the working environment.
        4.
        2023.11 구독 인증기관·개인회원 무료
        The Republic of Korea (ROK), as a member state of the IAEA, is operating the State’s System of Accounting for and Control (SSAC) and conducting independent national inspections. Furthermore, an evaluation methodology for the material unaccounted for (MUF) is being developed in ROK to enhance capabilities of national inspection. Generally, physical and chemical changes of nuclear material are unavoidable due to the operating system and structure of facilities, an accumulation of material unaccounted for (MUF) has been issued. IAEA developed statistical MUF evaluation method that can be applied to all facilities around the world and it mainly focuses on the diversion detection of nuclear materials in facilities. However, in terms of the national safeguard inspection, an evaluation of accountancy in facilities is additionally needed. Therefore, in this research, a new approach to MUF evaluation is suggested, based on the Guide to the Expression of Uncertainty in Measurement (GUM) that an evaluation of measurement uncertainty factors is straightforward. A hypothetical list of inventory items (LII) which has 6,118 items at the beginning and end of the material balance period, along with 360 inflow and outflow nuclear material items at a virtual fuel fabrication plant was employed for both the conventional IAEA MUF evaluation method and the proposed GUM-based method. To calculate the measurement uncertainty, it was assumed that an electronic balance, gravimetry, and a thermal ionization mass spectrometer were used for a measurement of the mass, concentration, and enrichment of 235U, respectively. Additionally, it was considered that independent and correlated uncertainty factors were defined as random factors and systematic factors for the ease of uncertainty propagation by the GUM. The total MUF uncertainties of IAEA (σMUF) and GUM (uMUF) method were 37.951 and 36.692 kg, respectively, under the aforementioned assumptions. The difference is low, it was demonstrated that the GUM method is applicable to the MUF evaluation. The IAEA method demonstrated its applicability to all nuclear facilities, but its calculated errors exhibited low traceability due to its simplification. In contrast, the calculated uncertainty based on the GUM method exhibited high reliability and traceability, as it allows for individual management of measurement uncertainty based on the facility’s accounting information. Consequently, the application of the GUM approach could offer more benefits than the conventional IAEA method in cases of national safeguard inspections where factor analysis is required for MUF assessment.
        5.
        2023.10 구독 인증기관·개인회원 무료
        Smartphone camera quality has been progressing alongside the advancement of the smartphone market. Consequently, there has sparked interest in macro photography of insects using smartphones either through using built-in "macro mode" or accessories like macro lenses, mounts, and auxiliary lighting. However, some limitations have become apparent, including challenges in capturing small insects, a short focal distance of no more than 10 cm, a narrow focus range, and lower image quality compared to dedicated cameras. We introduce an effective knowhow to these problems when taking pictures of insects in the field using a smartphone. And it provides a manual for tele-macro photography in the field, and suggestions for the future direction of smartphone and accessory development.
        6.
        2023.10 구독 인증기관·개인회원 무료
        우리나라 식물방역법은 검역병해충으로부터 국내 농업 및 자연환경을 보호하고자 규제병해충(검역병해충, 잠정규제병해충, 규제비검역병해충) 관련 위험평가, 식물검역기술개발계획, 식물검역 절차 및 방법, 검역결과 에 따른 처분, 규제병해충 예찰 및 방제 등에 관한 다양한 법적 절차 등을 규정하고 있다. 하지만, 식물검역병해충 을 어떻게 취급하여야 할 지에 관한 내용은 없다. 따라서 식물방역법이 추구하는 목적을 달성하기 위하여서는 ① 검역병해충을 어떻게 취급하여야 할 지를 규정하여야 하며, ② 검역병해충을 취급하는 시설(검사, 연구, 운송, 보관 등) 기준을 설정하고, ③ 검역병해충 취급 시설을 인증하고, 주기적인 재인증 기준을 설정하여야 한다. 이를 위하여 먼저 식물방역법에 검역병해충 취급시설 등에 관한 규정을 신설하고, 시행령, 시행규칙에 반영한 후에 ① 검역병해충 취급요령 ② 검역병해충 취급시설 기준 ③ 검역병해충 취급시설 인증기준 등의 고시를 제정하여 야 한다. 이를 위하여 식물병해충 관련 학계의 의견 반영이 가장 중요하다.
        7.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        According to NSSC Notice No. 2021-10, safety analysis needs to be introduced in the decommissioning plan. Public and occupational dose analyses should be conducted, specifically for unexpected radiological accidents. Herein, based on the risk matrix and analytic hierarchy process, the method of selecting accident scenarios during the decommissioning of nuclear power plants has been proposed. During decommissioning, the generated spent resin exhibits relatively higher activity than other generated wastes. When accidents occur, the release fraction varies depending on the conditioning method of radioactive waste and type of radioactive nuclides or accidents. Occupational dose analyses for 2 (fire and drop) among 11 accident scenarios have been performed. The radiation doses of the additional exposures caused by the fire and drop accidents are 1.67 and 4.77 mSv, respectively.
        4,000원
        8.
        2023.06 구독 인증기관 무료, 개인회원 유료
        At present, the assessment for the crew training using the ship handling simulator is completed by the assessor, which is subjective and difficult to unify the assessment criteria. Under this assessment mode, the assessor will have a great work intensity. So it is necessary to design and develop the automatic assessment system for the ship handling simulator. This paper introduces the automatic assessment system developed by Dalian Maritime University (shorted for DMU), which includes the assessment method, system architecture and implementation. A selected example of applications is described.
        4,000원
        9.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        한 척의 선박을 건조하기 위해서는 다양한 크기의 블록(block)들을 이동 및 탑재해야 한다. 이러한 과정에서 블록의 체결 방법 및 각 조선소 설비 특성에 맞는 다양한 기능에 부합하는 러그를 사용하고 있다. 블록 구조의 중량 및 형태에 따라서 러그의 크기와 형상이 다양하며, 샤클(shackle)이 체결되는 홀 주변에 부족한 강성을 보완하기 위하여 덧판(doubling pad)을 용접하여 구조를 보강한다. 리프팅 (lifting) 조건별 러그의 설계를 하는 방법은 보 이론(beam theory)에 의한 수계산 방법과 유한요소해석 모델링을 이용한 구조해석을 수행하고 있다. 해석적 방법의 경우, 요소의 종류와 모델링 방법에 따라서 결과 차이가 발생하여 표준화된 평가법의 정립이 필요한 상황이다. 이러한 모호한 방법론 적용 시 블록의 이동 및 반전(turn-over) 과정 중에서 심각한 안전 문제를 유발할 가능성이 있다. 본 연구에서는 러그의 실제 탑재공정에 따른 구조 응답을 평가할 수 있는 모델링 조건, 평가법을 확정하고자 다양한 변수의 영향을 수치 구조해석을 통하여 비교 및 분석하였다. 러그 홀(hole) 주변 덧판부와 용접 비드(bead)를 표현한 모델링 기법이 가장 실제적인 거동 결과를 주고 있다. 실제 러그와 동일 한 조건(용접부 비드만 주재료와 연결)의 모델링에 등가하중을 적용한 결과는 MPC 하중 적용 결과보다 낮은 최종강도를 나타낸다. 더불어 해석 시간 단축을 위해서 2차원 쉘(shell) 요소를 적용한 경우, 덧판 두께를 85% 수준으로 감소시켜서 안전사용하중을 예측할 수 있음을 확 인하였다. 논문에서 검토한 다양한 변수의 영향들 결과는 러그 설계 및 안전사용하중 예측에 근거 자료로 활용될 것으로 기대된다.
        4,000원
        10.
        2023.05 구독 인증기관·개인회원 무료
        The purpose of this study is to provide technical issues in upgrade and modification of fuel handling equipment at operating nuclear power plants. The improvement for safety function and performance enhancement of fuel handling equipment has been going on for 20 years since the early 2000’s. This improvement is recently focused on the replacement of components through the performance analysis and the operation and maintenance plan based on replacement cycle of its component. Additionally, it is required to secure spare parts so that it can be operated at all times with compatibility and standardization to other domestic nuclear power plants. The fuel handling equipment is consisted of refueling machine, upender and carriage of fuel transfer system, spent fuel handling machine, new fuel elevator and various tools, and the equipment are linked in systematic interlocks. Fuel handling is a critical task during a nuclear power plant refueling outage. Even minor component defects may stop operation of the whole system and have a significant impact on the overall system process. To achieve this goal, major components that are expected to be replaced for reliable operation are summarized as follows; 1) motor assembly with AC servomotors and driver for bridge, trolley and hoist of refueling machine and spent fuel handling machine, 2) winch motor and drive for upender and carriage of fuel transfer system, 3) operator control console with a HMI PC base PLC (Programmable Logic Controller) control system, 4) positioning and load weighing sensors such as an encoder and a load cell with its support for periodic calibration and maintenance, 5) main power drapped style festoon cable assembly for bridge of refueling machine, 6) pneumatic control assembly for gripper operation of refueling machine, 7) active components (e. g., air motor, hydraulic cylinder and limit switch) to be removable and reinstallable without requiring the water level to be lowered. It is advisable to utilize such various information as it can help to improve reliability of fuel handling as a critical path in upgrade and modification of fuel handling equipment at operating nuclear power plants.
        11.
        2022.10 구독 인증기관·개인회원 무료
        For deep geological repository of the spent nuclear fuel, the fuel assemblies loaded in the storage cask are transferred to the disposal cask and the operation is performed in the fuel handling hot cell at the fuel re-packaging facility. As the fuel handling hot cell shielding is accomplished by the concrete wall and the viewing glass window, the required shielding thickness was evaluated for both materials. The ordinary concrete is applied to hot cell wall and two kinds of glasses, i.e., single layer of lead glass and double layer of lead glass and borosilicate glass, are considered for the viewing glass window. A bare spent PWR fuel assembly exposed to the environment in the hot cell was considered as the neutron and gamma radiation sources. The neutron and gamma transport calculations were performed using the MAVRIC program of the SCALE code system for the dose rate evaluation. The dose limit of 10 μSv/h is applied as the target dose to establish the required shielding thickness. The concrete wall of 94 cm thickness reduces the total dose rate to 6.9 μSv/h, which is the sum of neutron dose and gamma dose. Penetrating the concrete wall, both of the neutron dose and the gamma dose decrease constantly with shield thickness and the gamma dose is always dominant through whole penetrating distance. Single layer lead glass of 74 cm thickness reduces total dose rate to 6.2 μSv/h. Applying double layer shield glass combined of lead glass and borosilicate glass, the total dose rate reduces to 3.6 μSv/h at same shield thickness of 74 cm. Through the shield glass, gamma dose decreases rapidly and neutron dose decreases slowly compared with those for concrete wall. In result, neuron dose becomes dominant on the window glass shielding. The more efficient dose reduction of double layer glass is achieved by the borosilicate glass’s superior neutron shielding power. Thus, the use of double layer glass of lead glass and borosilicate glass is recommended for the viewing glass of the fuel handling hot cell. Finally, it is concluded that about 1 m thick concrete wall and 75 cm thick viewing glass window are sufficient for the radiation shielding of the hot cell at the spent fuel repackaging facility.
        12.
        2022.10 구독 인증기관·개인회원 무료
        The purpose of this study is to provide lessons learned in the experience of improvement work of fuel handling equipment at operating nuclear power plants. The upgrade of fuel handling equipment for safety enhancement and performance improvement has been going on for 15 years since the early 2000’s. The main goal is to increase fuel loading/unloading capability of the equipment from about 2.5 fuel assemblies per hour to more than six (6). It is achieved with sequential operations of three (3) fuel handling equipment, which consists of the refueling machine, the fuel transfer system and the spent fuel handling machine. The scope of the upgrade for fuel handling equipment is summarized as follows. The PC data control system based on PLC for interlocks and high speed motor drive system is introduced for better operating efficiency. The motors and drives for bridge, trolley, and hoist are replaced with AC servomotors and drivers, respectively. The fuel transfer system has an auto-initiation feature operating from the refueling machine or the spent fuel handling machine. The winch motor and drive for the carriage of fuel transfer system is also replaced with AC servomotors and drivers. And some of HPU (hydraulic power units) equipment for each building (reactor containment building and fuel handling building) are replaced to improve their function. The considerations for improvement of fuel handling equipment are as belows. 1) Fuel handling should be consistent with the instructions provided by the fuel designer and/or manufacturer, which are for Standard type fuel and Westinghouse type fuel, used in domestic nuclear power plants. Each fuel has unique design characteristics, which are PLC setpoints for overload and underload, slow speed zones for a bridge, trolley and hoist, allowable acceleration/deceleration value in handling, hoist elevation and manual speed in off-index operation at reactor. 2) The interlock system should be designed in accordance with design criteria specified by the utilities of nuclear power plant. 3) Performance should be improved according to the operating characteristics of the fuel handling equipment. High-speed and optimization of FTS upender and carriage are essential for operating performance so that its modification should be considered first. And the low speed and range in the operation mechanism of the hoist should be designed to comply with guidelines. 4) The accident analysis through self-diagnosis function and operation history in modification at domestic operating nuclear power plants would be good lessons learned. It is advisable to utilize such various information as it can help to improve reliability of nuclear fuel handling operation and power plant operation rate.
        13.
        2022.10 구독 인증기관·개인회원 무료
        The Republic of Korea is implementing safeguards for domestic nuclear facilities through cooperation with the IAEA. But it is not to evaluate the material balance for the material unaccounted for, MUF in the bulk handling facility. Although the development of a material balance evaluation program is underway, there are no related regulations. The State Regulatory Authority, SRA is performing material balance evaluation, MBE on the facility based on the design information and material balance results of the facility. However, it is not possible to directly derive measurement uncertainty for the facility’s measurement equipment, which is an important variable of MBE. To solve this problem, it is trying to derive a method suitable for the domestic environment by investigating the some measurement uncertainty estimation methods and analyzing characteristics of them. In this study, the traditional measurement uncertainty estimation method, GUM method and GUM-S1 method were studied and the advantages and disadvantages were analyzed. Due to the problems mentioned above, the uncertainty quantification technique currently being used cannot be applied to the evaluation of the domestic material balance. Therefore, we are tying to apply them to the evaluation the domestic material balance through the above three methods or a combination of them appropriately. Through this continuing study, it is expected that it will be possible to present a plan to derive measurement uncertainty optimized for the domestic MBE environment.
        14.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An automated material handling system (AMHS) has been emerging as an important factor in the semiconductor wafer manufacturing industry. In general, an automated guided vehicle (AGV) in the Fab’s AMHS travels hundreds of miles on guided paths to transport a lot through hundreds of operations. The AMHS aims to transfer wafers while ensuring a short delivery time and high operational reliability. Many linear and analytic approaches have evaluated and improved the performance of the AMHS under a deterministic environment. However, the analytic approaches cannot consider a non-linear, non-convex, and black-box performance measurement of the AMHS owing to the AMHS’s complexity and uncertainty. Unexpected vehicle congestion increases the delivery time and deteriorates the Fab’s production efficiency. In this study, we propose a Q-Learning based dynamic routing algorithm considering vehicle congestion to reduce the delivery time. The proposed algorithm captures time-variant vehicle traffic and decreases vehicle congestion. Through simulation experiments, we confirm that the proposed algorithm finds an efficient path for the vehicles compared to benchmark algorithms with a reduced mean and decreased standard deviation of the delivery time in the Fab’s AMHS.
        4,000원
        15.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Spent filters with a high radiation dose rate of 2 mSv·hr−1 or more are not easily managed. So far, the Korean policy for spent filter disposal is to store them temporarily at nuclear power plants until the waste filters can be easily managed. Nuclear power plant decommissioning in Korea is starting with Kori unit 1. Volume reduction of waste generated during decommissioning can reduce the cost and optimize the space usage at disposal site. Therefore, efficient volume reduction is a very important factor during the decommissioning process. A conceptual method, based on the experiences of developing 200 and 800 ton compactors at Orion EnC, has been developed considering worker exposure with the followings a crusher (upgrade of compaction efficiency), an automatic dose measuring system with a NaI(Tl) detector, a shield box, an inner drum to prepare for easy handling of drums and packaging, a 30 ton compactor, and an automatic robot system. This system achieves a volume reduction ratio of up to 85.7%; hence, the system can reduce the disposal cost and waste volume. It can be applied to other types of wastes that are not easily managed due to high dose rates and remote control operation necessity.
        4,200원
        16.
        2022.05 구독 인증기관·개인회원 무료
        In Malaysia, there are several industries processing mineral ores generate residues containing naturally occurring radioactive material (NORM) with activity concentrations above the control limits established by the Malaysian Atomic Energy Licensing Board (AELB). These industries use mineral ores or concentrated ores as their feed materials to produce or extract valuable sand minerals or rare earth compounds for use in another industries. The control limits for activity concentrations of Uranium-238 (U-238) and Thorium-232 (Th-232) and their decay series is 1.0 Becquerel per gram (Bq·g−1) while activity concentration of Potassium 40 (K-40) is 10.0 Bq·g−1. The management of residue containing NORM radioactivity above the control limits must be done in accordance with current rules and regulations including proper handling, storage, transportation and/or disposal. Where possible, appropriate mixture process with other non-radiological material would reduce the activity concentrations to below the control limits. Depending on specific characteristics of residue, appropriate approach to reuse or recycle should be encouraged as part of special waste management. For this case, an exemption to release it from radiological controls can be applied but require scrutiny review and approval process by AELB. In addition, the health and safety aspects and environmental issues should be assessed which to be done in accordance with the relevant rules and regulations. As a last resort, a disposal of residue containing NORM radioactivity shall be done at the landfill disposal facility approved by AELB and other relevant Authorities.
        17.
        2022.05 구독 인증기관·개인회원 무료
        Glass fiber, which was used as an insulation material in pipes near the steam generator system of nuclear power plants, is brittle and the size of crushed particles is small, so glass fiber radioactive waste (GFRW) can cause exposure of workers through skin and breathing during transport and handling accidents. In this study, Q-system which developed IAEA (International Atomic Energy Agency) for setting the limit of radioactivity in the package is used to confirm the risk of exposure due to an accident when transporting and handling GFRW. Also, the evaluated exposure dose was compared with the domestic legal effective dose limit to confirm safety. Q-system is an evaluation method that can derive doses according to exposure pathway (EP) and radioactivity. Exposure doses are calculated by dividing into five EP: QA, QB, QC, QD, and QE. Since the Q-system is used to set the limit of radioactivity that the dose limits is satisfied to nearby workers even in package handling accidents, the following conservative assumptions were applied to each EP. QA, QB are external EP of assuming complete loss of package shielding by accident and radiation are received for 30 minutes at 1 m, QC is an internal EP that considers the fraction of nuclides released into the air and breathing rate during accident, and QD is an external EP that skin contamination for 5 hours. Finally, QE is an internal and external EP by inert gases (He, Ne, Ar, Kr, Xe, Rn) among the released gaseous nuclides, but the QE pathway was excluded from the evaluation because the corresponding nuclide was not present in the GFRW products used for evaluation. In this study, the safety evaluation of GFRW was performed package shielding loss and radioactive material leakage due to single package accident according to assumption of four pathways, and the nuclide information used the average radioactivity for each nuclide of GFRW. As a result of the dose evaluation, QA was evaluated as 2.73×10−5 mSv, QB as 1.06×10−6 mSv, QC as 7.53×10−3 mSv, and QD as 2.10×10−6 mSv, respectively, and the total exposure dose was only 7.56×10−3 mSv, it was confirmed that when compared to the legal limits of the general public (1 mSv) and workers (20 mSv) 0.756% and 0.038%, respectively. In this study, it was confirmed that the legal limitations of the general public and workers were satisfied evens in the event of an accident as a result of evaluating the exposure dose of nearby targets for package shielding loss and radioactive material leakage while transporting GFRW. In the future, the types of accidents will be subdivided into falling, fire, and transportation, and detailed evaluation will be conducted by applying the resulting accident assumptions to the EP.
        18.
        2022.05 구독 인증기관·개인회원 무료
        The design of nuclear fuel storage and handling area includes the activities related to the storage and inspection before fuel loading, transfer into the reactor, removal of irradiated fuel to the spent fuel storage rack, underwater handling and storage, and handling into a shipping cask. The purpose of this study is to provide the design requirements for the spent fuel pool to be prevented from the loss of cooling water and for heavy load control to prevent any load drop resulting in damage to safetyrelated systems during heavy load handling in accordance with the regulatory guidelines. And another purpose is to review the sizing of minimum wet storage capacity in the spent fuel pool based on the maximum refueling batch from the core during refueling plus a full core off-load of fuel assemblies and the minimum discharge burnup spent fuel storage during the design life of plant requested by the utility. As the results of this study, the current general arrangement for the spent fuel storage and handling area and the minimum storage capacity are evaluated. These can be good recommendations to enhance more safe and efficient if implemented to the new nuclear power plants.
        19.
        2022.05 구독 인증기관·개인회원 무료
        Since 2017, the Korea Institute of Nuclear Nonproliferation and Control (KINAC) has been implementing State System of Accounting for and Control of Nuclear Materials (SSAC) training courses for the nuclear Newcomer States. This IAEA SSAC course for Newcomer States aims to provide overall concepts and techniques, particularly on nuclear material accountancy and control systems, and address future challenges with regard to developing new nuclear power plants. Due to the restricted travels and limited in-person access to training and facilities from the COVID-19 pandemic, however, a new software was developed to substitute a technical tour on bulk handling facility (BHF) of the training course, and the course was favorably shifted to online in 2021. This newly built training software allows participants to follow each step of the technical process at a virtual bulk handing facility, and provides a video tour for such conditions where the software is found difficult to operate. Another feature of the development is a security function that prevents access of unauthorized users to the software. The achievement is expected to strengthen the SSAC of Newcomer States and ensure the practical implementation of safeguards from the initial stage of their novel nuclear power program through cooperation with IAEA. This contribution of the Republic of Korea (ROK) as one of the leading countries in the field of nuclear nonproliferation will further extend the partnership between IAEA and ROK and promote cooperation with the Newcomer States.
        20.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study provides technical information about the nuclear fuel handling process, which consists of various subprocesses starting from new fuel receipt to spent fuel shipment at a nuclear power plant and the design requirements of fuel handling equipment. The fuel handling system is an integrated system of equipment, tools, and procedures that allow refueling, handling and storage of fuel assemblies, which comprise the fuel handling process. The understanding and reaffirming of detailed code requirements are requested for application to the design of the fuel handling and storage facility. We reviewed the design requirements of the fuel handling equipment for its adequate cooling, prevention of criticality, its operability and maintainability, and for the prevention of fuel damage and radiological release. Furthermore, we discussed additional technical issues related to upgrading the current code requirements based on the modification of the fuel handling equipment. The suggested information provided in this paper would be beneficial to enhance the safety and the reliability of the fuel handling equipment during the handling of new and spent fuel.
        4,000원
        1 2 3 4 5