검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,153

        25.
        2023.11 구독 인증기관·개인회원 무료
        Detectors utilized for nuclear material safeguards have been using scintillation detectors which are inexpensive and highly portable, and electrically cooled germanium detectors which are expensive but have excellent energy resolution. However, recently IAEA, the only international inspectorate of nuclear material safeguards for the globe, have replaced the existing scintillation detector and electrically cooled germanium detector with a CdZnTe detector owing to the improved performance of room-temperature semiconductors significantly. In this paper, we will examine the spectrum features of the CdZnTe detector such as spectrum shape, energy resolution, and efficiency in the energy region of interest, which are the important characteristics for measuring Uranium enrichment. For this purpose, it would be conducted to compare its spectrum features using CdZnTe, NaI, HPGe detectors. The main energies of interest include 185.7 keV and 1,001 keV, which are the decay energies of uranium 235 and uranium 238. The results of this study will provide a better understanding of the spectral features of various detectors used in uranium enrichment analysis, and are expected to be used as basic data for future related software development.
        26.
        2023.11 구독 인증기관·개인회원 무료
        Activated carbon (AC) is used for filtering organic and radioactive particles, in liquid and ventilation systems, respectively. Spent ACs (SACs) are stored till decaying to clearance level before disposal, but some SACs are found to contain C-14, a radioactive isotopes 5,730 years halflife, at a concentration greater than clearance level concentration, 1 Bq/g. However, without waste acceptance criteria (WAC) regarding SACs, SACs are not delivered for disposal at current situation. Therefore, this paper aims to perform a preliminary disposal safety examination to provide fundamental data to establish WAC regarding SACs SACs are inorganic ash composed mostly of carbon (~88%) with few other elements (S, H, O, etc.). Some of these SACs produced from NPPs are found to contain C-14 at concentration up to very-low level waste (VLLW) criteria, and few up to low-level waste (LLW) criteria. As SACs are in form of bead or pellets, dispersion may become a concern, thus requiring conditioning to be indispersible, and considering VLL soils can be disposed by packaging into soft-bags, VLL SACs can also be disposed in the same way, provided SACs are dried to meet free water requirement. But, further analysis is required to evaluate radioactive inventory before disposal. Disposability of SACs is examined based on domestic WAC’s requirement on physical and chemical characteristics. Firstly, particulate regulation would be satisfied, as commonly used ACs in filters are in size greater than 0.3 mm, which is greater than regulated particle size of 0.2 mm and below. Secondly, chelating content regulation would be satisfied, as SACs do not contain chelating chemicals. Also, cellulose, which is known to produce chelating agent (ISA), would be degraded and removed as ACs are produced by pyrolysis at 1,000°C, while thermal degradation of cellulose occurs around 350~600°C. Thirdly, ignitability regulation would be satisfied because as per 40 CFR 261.21, ignitable material is defined with ignition point below 60°C, but SACs has ignition point above 350°C. Lastly, gas generation regulation would be satisfied, as SACs being inorganic, they would be targeted for biological degradation, which is one of the main mechanism of gas generation. Therefore, SACs would be suitable to be disposed at domestic repositories, provided they are securely packaged. Further analysis would be required before disposal to determine detailed radioactive inventories and chemical contents, which also would be used to produce fundamental data to establish WAC.
        27.
        2023.11 구독 인증기관·개인회원 무료
        In the nuclear environment, sensors ensure safety, monitoring, and operational efficiency under various operating conditions. These sensors come in various forms, each tailored to specific purposes, including nuclear safety and security, waste treatment and storage, gas leak detection, temperature and humidity monitoring, and corrosion detection. Ensuring the longevity of sensors without the need for frequent replacements is a vital goal for researchers in this field. This paper explores materials that can act as shields to protect sensors from harsh environmental conditions (high radiation and temperatures) to enhance their lifetime. The types of material that had been explored were divided into categories: metal and non-metal. Fourteen types of metal and seven different plastic materials were studied and focused on their characteristics and current applications. Considering properties like melting point, intensity, and conductivity, plastic materials are chosen to be examined as sensor shielding material. A preliminary experiment was conducted to verify signal characteristics changes by shielding material. Metal material and plastic material each were placed in the middle of the granite and the target sensor. The result showed that when metal is between the granite and the sensor, the density and impedance are higher in granite than in the metal. This leads to signal attenuation and a shift in resonance frequency, while plastic does not. Therefore, PPS (Polyphenylene sulfide) and PAI (Polyamide-imide) have lower density and impedance than granite while also possessing heat, moisture, and radiation resistance for effective shielding.
        28.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        29.
        2023.11 구독 인증기관·개인회원 무료
        The WRK (Waste Repository Korea bentonite) compacted bentonite medium has been considered as the appropriate buffer material in the Korean SNF (Spent nuclear fuel) repository site. In this study, hydraulic properties of the WRK compacted bentonite core (4.5 cm in diameter and 1.0 cm in length) as the buffer material were investigated in laboratory experiments. The porosity and the entry pressure of the water saturated core at different confining pressure conditions were measured. The average velocity of water flow in the WRK compacted bentonite core was calculated from results of the breakthrough curves of the CsI aqueous solution and the hydraulic conductivity of the core was also calculated from the continuous flow core experiments. Because various gases could be generated by continuous SNF fission, container corrosion and biochemical reactions in the repository site, the gas migration property in the WRK compacted bentonite core was also investigated in experiments. The gas permeability and the average of gas (H2) in the core at different water saturation conditions were measured. Laboratory experiments with the WRK Compacted bentonite core were performed under conditions simulating the DGR environment (confining pressure: 1.5- 20.0 MPa, injection pressure: 1.0-5.0 MPa, water saturation: 0-100%). The WRK Compacted bentonite core was saturated at various confining pressure conditions and the porosity ranged from 27.5% to 43.75% (average: 36.75%). The calculated hydraulic conductivity (K) of the core using experimental results was 8.69×10-11 cm/s. The gas permeability of the core when the water saturation 0~58 % was ranged of 19.81~3.43×10-16 m2, representing that the gas migration in the buffer depends directly on the water saturation degree of the buffer medium. The average gas velocity in the core at 58% of water saturation was 9.8×10-6 m/s, suggesting that the gas could migrate fast through the buffer medium in the SNF repository site. Identification of the hydraulic property for the buffer medium, acquired through these experimental measurements is very rare and is considered to have high academic values. Experimental results from this study were used as input parameter values for the numerical modeling to simulate the long-term gas migration in the buffer zone and to evaluate the feasibility of the buffer material, controlling the radionuclide-gas migration in the SNF repository site.
        30.
        2023.11 구독 인증기관·개인회원 무료
        Concrete structures of spent nuclear fuel interim storage facility should maintain their ability to shield and structural integrity during normal, off-normal and accident conditions. The concrete structures may deteriorate if the interim storage facility operates for more than several decades. Even if deterioration occurs, the concrete structures must maintain their own functions such as radiation shielding protection and structural integrity. Therefore, it is necessary to establish an analysis methodology that can evaluate whether the deteriorated concrete structure maintains its integrity under not only normal or off-normal condition but also accident condition. In this study, dynamic material testing was conducted on concrete cores extracted from HANARO exterior wall during seismic reinforcement construction. HANARO was constructed at the Korea Atomic Energy Research Institute in 1995, following strict nuclear quality assurance standards. In order to conduct the dynamic material testing of the extracted concrete cores, self-disposal had to be performed because the concrete cores were extracted and stored in a radiation controlled area. A self-disposal application was prepared and submitted based on the radionuclide analysis results, and it was finally approved in April 2023. Then, a test was performed by processing a specimen for dynamic property testing using a self-disposed concrete core. The concrete cores were processed to create specimens for dynamic material testing and the dynamic material testing was performed to obtain stress-strain diagrams according to the strain rate.
        31.
        2023.11 구독 인증기관·개인회원 무료
        The development of advanced nuclear facilities is progressing rapidly around the world. Newly designed facilities have differences in structure and operation from existing nuclear facilities, so Safeguards by Design (SBD), which applies safeguards at the design stage, is important. To this end, designers should consider the safeguardability of nuclear facilities when designing the system. Safeguardability represents a measure of the ease of safeguards, and representative evaluation methodologies are Facility Safeguardability Analysis (FSA) and Safeguardability Check-List (SCL). Those two have limitations in the quantification of safeguardability. Accordingly, in this study, the Safeguardability Evaluation Method (SEM), which has clear evaluation criteria based on engineering formulas, was developed. Nuclear Material Accountancy (NMA), a key element of Safeguards, requires the Material Balance Area (MBA) of the target facility and performs Material Balance Evaluation (MBE) based on the quantitative evaluation of nuclear materials entering or leaving the MBA. In this study, about 10 factors related to NMA were developed, including MBA, Key Measurement Point (KMP), Uncertainty of a detector, Radiation signatures, and MUF (Material Unaccounted For). For example, one of the factors, MUF is used in MBA to determine diversion through analysis of unquantified nuclear materials and refers to the difference between Book Inventory and Physical Inventory, as well as errors occurring during the process in bulk facilities, errors in measurement, or intentional use of nuclear materials. This occurs in situations such as attempted diversion, and accurate MUF evaluation is essential for solid Safeguards implementation. MUF can be evaluated using the following formula (MUF=(PB+X-Y)-PE). The IAEA’s Safeguards achievement conditions (MUF < SQ) should be met. Considering this, MUF-related factors were developed as follows. (􀜵􀜧􀜯 = 1 − 􀯆􀯎􀮿 􀯌􀯊 ) In this way, about 10 factors were developed and described in the text. This factors is expected to serve as an important factor in evaluating the safeguardability of NMA, and in the future, safeguardability factors related to Containment & Surveillance (C&S) and Design Information Verification (DIV) will be additionally developed to conduct a comprehensive safeguardability evaluation of the target facility. This methodology can significantly enhance safeguardability during the design stage of nuclear facilities.
        32.
        2023.11 구독 인증기관·개인회원 무료
        As the demand for nuclear power increases as a means to achieve carbon neutrality, concerns about nuclear proliferation have also grown. Consequently, significant researches have conducted to enhance nuclear non-proliferation resistance. Among these research, nuclear material attractiveness is a methodology used to evaluate how appealing a particular material is for potential use in nuclear weapons, based on the characteristics of that material. Existing nuclear material attractiveness assessments focused on materials like U, Pu, and TRU, which could be directly used in the production of nuclear weapons. However, these assessments did not consider how the properties of nuclear materials change throughout the nuclear fuel cycle, with each facility process. This study assumed a scenario of the nuclear fuel cycle of graphite reduction reactors and analyzed including enrichment facilities and PUREX. This study used the FOM (Figure-Of-Merit) method developed by LANL (Los Alamos National Laboratory) for evaluating the nuclear material attractiveness. The FOM formula consists of three parameters such as critical mass, heat content, and dose The critical mass of targe materials and the dose evaluation were conducted using the Monte Carlo N-Particle code. The heat content was calculated using the ORIGEN code embedded in the Scale code. In particular, if U-238 is dominant in the facility’s materials, such as mining and refining facilities, and critical mass evaluation is unpractical. Therefore, 1SQ (Significant Quantity) of that uranium was assumed as the critical mass value for the FOM evaluation, even though 1SQ is not identical to the critical mass As a result of this study, the attractiveness of Pu produced by PUREX among all nuclear fuel cycle facilities was 2.7616, which was the most attractive to be diverted to nuclear weapons. Through this study, it was shown that the proliferation risk of the nuclear facilities in the nuclear fuel cycle and risk of diversion among those facilities.
        33.
        2023.11 구독 인증기관·개인회원 무료
        Among the public notices of the NSSC, five notices related to safeguards, including “Education of Nuclear Control, International Regulatory Materials, Preparation of Regulation of NMAC (Nuclear Material Accounting and Control), the National Inspection of NMAC, and Reporting of International Regulatory Materials” The regulations on the National Inspection of NMAC have remained the same since some revisions were made on December 26, 2017, raising the need to revise the public notice due to changes in the domestic and international safeguards regulatory environment. Accordingly, this paper analyzes the public notice of the National Inspection of NMAC and proposes the revision direction. The regulation regarding the National Inspection of NMAC comprises sections such as Purpose and Definition, Types - Scope - Frequency of the National Inspection, Notification of the National Inspection’s plan, and Management of Violation. Appendices include the contents of the violation table, explanations regarding types of violations, and various forms related to the National Inspection, which are attached separately. IAEA mentioned that ROK was selected as a pilot country for the Improved SLA (State-Level Approach) project starting in November 2020. IAEA explained that a quantitative and standardized methodology was adopted and developed for this purpose. As a result, the Unannounced Inspection at LWR facilities will transition to the Random Interim Inspection. Additionally, the Physical Inventory Verification in CANDU facilities will increase to once a year per reactor. This status will change the frequency and intensity of inspection at domestic nuclear facilities. Furthermore, domestically, there is an ongoing trend of continuous growth and diversification of nuclear facilities. In light of the changing domestic and international safeguards environment, it is necessary to set a direction for revising the regulation regarding the National Inspection of NMAC that was partially amended in 2017 to align with the current status. Firstly, due to the increased burden on operators resulting from the increased number of IAEA inspections following the application of Improved SLA, there is a need to streamline the National Inspection of NMAC frequency to enhance overall regulatory efficiency. Furthermore, the definition section should also be revised to include matters related to the regulation to reflect the current reality accurately. Considering the operation and name changes of new domestic nuclear facilities, there may be a need to add or modify computer input codes. While pursuing the revision of regulations regarding the National Inspection of NMAC, an analysis of the need for revision of other regulations related to safeguards should also be conducted, and directions should be set. Through this process, improving the regulatory framework that forms the basis of safeguards can help prevent confusion among operators and promote regulatory efficiency. We can better cope with these changes by proactively adapting to the rapidly changing domestic and international nuclear environment.
        34.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear Material Accountancy (NMA) system quantitatively evaluates whether nuclear material is diverted or not. Material balance is evaluated based on nuclear material measurements based on this system and these processes are based on statistical techniques. Therefore, it is possible to evaluate the performance based on modeling and simulation technique from the development stage. In the performance evaluation, several diversion scenarios are established, nuclear material diversion is attempted in a virtual simulation environment according to these scenarios, and the detection probability is evaluated. Therefore, one of the important things is to derive vulnerable diversion scenario in advance. However, in actual facilities, it is not easy to manually derive weak scenario because there are numerous factors that affect detection performance. In this study, reinforcement learning has been applied to automatically derive vulnerable diversion scenarios from virtual NMA system. Reinforcement learning trains agents to take optimal actions in a virtual environment, and based on this, it is possible to develop an agent that attempt to divert nuclear materials according to optimal weak scenario in the NMA system. A somewhat simple NMA system model has been considered to confirm the applicability of reinforcement learning in this study. The simple model performs 10 consecutive material balance evaluations per year and has the characteristic of increasing MUF uncertainty according to balance period. The expected vulnerable diversion scenario is a case where the amount of diverted nuclear material increases in proportion to the size of the MUF uncertainty, and total amount of diverted nuclear material was assumed to be 8 kg, which corresponds to one significant quantity of plutonium. Virtual NMA system model (environment) and a divertor (agent) attempting to divert nuclear material were modeled to apply reinforcement learning. The agent is designed to receive a negative reward if an action attempting to divert is detected by the NMA system. Reinforcement learning automatically trains the agent to receive the maximum reward, and through this, the weakest diversion scenario can be derived. As a result of the study, it was confirmed that the agent was trained to attempt to divert nuclear material in a direction with a low detection probability in this system model. Through these results, it is found that it was possible to sufficiently derive weak scenarios based on reinforcement learning. This technique considered in this study can suggest methods to derive and supplement weak diversion scenarios in NMA system in advance. However, in order to apply this technology smoothly, there are still issues to be solved, and further research will be needed in the future.
        35.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Refined structured tin dioxide gets the amount of attraction because of its low cost and stability. The C@SnO2 nanospheres with mesoporous structures were produced using the hard template method in this work. The C@SnO2 is primarily gained attributed to the dehydration condensation of C6H12O6 and the hydrolysis of SnCl4 ·5H2O. The morphology of the C@SnO2 was analyzed by physical characterization and the diameter of the obtained C@SnO2 was around 138 nm. When C@SnO2 was applied to lithium-ion batteries as anode material, it performed outstanding electrochemical properties, with a capacity of 735 and 539 mA h g− 1 maintained at 1000 and 2000 mA g− 1, respectively. Furthermore, it exhibits favorable discharge/ charge cycle stability. This is probably because of the more chemically redox active sites provided by C@SnO2 nanocomposites and it also allows fast ion diffusion and electron migration.
        4,000원
        36.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The need for lightweight yet strong materials is being demanded in all industries. Carbon fiber-reinforced plastic is a material with increased strength by attaching carbon fiber to plastic, and is widely used in the aerospace industry, ships, automobiles, and civil engineering based on its low density. Carbon-reinforced fiber plastic is a material widely used in parts and manufactured products, and structural analysis simulation is required during design, and application of actual material properties is necessary for accurate structural analysis simulation. In the case of carbon-reinforced fiber plastics, it is reported that there is a porosity of around 0.5% to 6%, and it is necessary to check the change in material properties according to the porosity and pore shape. It was confirmed by applying the method. It was confirmed that the change in elastic modulus according to the porosity was 10.7% different from the base material when the porosity was 6.0%, and the Poisson's ratio was confirmed to be less than 3.0%. It was confirmed that the elliptical spherical pore derived different material properties from the spherical pore depending on the pore shape, and it was confirmed that the shape of the pore had to be confirmed to derive equivalent material properties.
        4,000원
        37.
        2023.10 구독 인증기관·개인회원 무료
        Because Scotinophara lurida has the habit of living under the rice plant, an introduction of a method for efficient control when spraying eco-friendly organic materials is needed. In this study, we investigated the density of S. lurida in drained- and irrigated-paddy field after spraying an organic material containing garlic bulb extracts, which has high insecticidal activity in S. lurida in direct spraying test in glass tube. As a result, an irrigated rice paddy showed a control effect of 66.4% after 3 days of spraying and 86.2% after 7 days, while a drained rice paddy showed a control effect of 33.9% after spraying and 61.9% after 7 days. These results suggest that effective control can be achieved in irrigated rice fields if organic farming materials are evenly sprayed and reach to the body of S. lurida. It is remained to study how irrigated water do contribute to increase the insecticidal effect in the future.
        1 2 3 4 5