검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 41

        1.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        During the dismantling of nuclear facilities, a large quantity of radioactive concrete is generated and chelating agents are required for the decontamination process. However, disposing of environmentally persistent chelated wastes without eliminating the chelating agents might increase the rate of radionuclide migration. This paper reports a rapid and straightforward ion chromatography method for the quantification of citric acid (CA), a commonly used chelating agent. The findings demonstrate acceptable recovery yields, linearities, and reproducibilities of the simulated samples, confirming the validity of the proposed method. The selectivity of the proposed method was confirmed by effectively separating CA from gluconic acid, a common constituent in concretes. The limits of detection and quantification of the method were 0.679 and 2.059 mg·L−1, respectively, while the recovery yield, indicative of the consistency between theoretical and experimental concentrations, was 85%. The method was also employed for the quantification of CA in a real concrete sample. These results highlight the potential of this approach for CA detection in radioactive concrete waste, as well as in other types of nuclear wastes.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        Chelating agents, such as EDTA, NTA, and citric acid, possess the capacity to establish complexes with radionuclides, potentially enhancing the migration of such radionuclides from the disposal sites. Hence, quantification of these chelating agents in radioactive wastes is required to ensure secure disposal protocols. The determination of chelating agents in radioactive wastes is mainly composed of two steps, e.g. extraction and detection. However, there are little information on the extraction of the chelators in various radioactive wastes. We endeavored to optimize the extraction conditions for citric acid (CA) found within concrete, a prevalent component in the context of dismantled waste materials. Given the inherent high solubility of CA in water, we applied an aliquot of deionized water to the concrete and conducted a one-hour ultrasonic leaching procedure to facilitate chelate extraction. Subsequently, following the preparation of the concrete leachate via vacuum filtration and centrifugation to yield a clarified solution, we quantified the concentration of CA within the solution using Ion Chromatography (IC). To enhance leaching efficiency, we examined the % recovery variation with respect to the pH of the leaching solution. The optimized extraction method will be applied to diverse chelating agents and radioactive waste categories.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Decommissioning waste is generated with various types and large quantities within a short period. Concrete, a significant building material for nuclear facilities, is one of the largest decommissioning wastes, which is mixed with aggregate, sand, and cement with water by the relevant mixing ratio. Recently, the proposed treatment method for volume reduction of radioactive concrete waste was proven up to scale-up testing using unit equipment, which involved sequentially thermomechanical and chemical treatment. According to studies, the aggregate as non-radioactive material is separated from cement components with contaminated radionuclides as less than clearance criteria, so the volume of radioactive concrete waste is decreased effectively. However, some supplementation points were presented to commercialize the process. Hence, the process requires efficiency as possible to minimize the interface parts, either by integration or rearranging the equipment. In this study, feasibility testing was performed using integrated heating and grinding equipment, to supplement the possible issue of generated powder and dust during the process. Previously, heat treatment and grinding devices were configured separately for pilot-scale testing. But some problems such as leakage and pipe blockage occurred during the transportation of generated fine powder, which caused difficulties in maintaining the equipment. For that reason, we studied to reduce the interface between the equipment by integrating and rearranging the equipment. To evaluate the thermal grinding performance, the fraction of coarse and concrete fines based on 1mm particle size was measured, and the amount of residual cement in each part was analyzed by wet analysis using 4M hydrochloric acid. The result was compared with previous studies and the thermomechanical equipment could be selected to enhance the process. Therefore, it is expected that the equipment for commercialization could be optimized and composed the process compactly by this study.
        4.
        2023.11 구독 인증기관·개인회원 무료
        In the Kori power plant radioactive waste storage, the concentrated waste and spent resin drums generated in the past are repacked and stored in large concrete drums. Four 200 L drums of solidified concentrated waste are packed in the square concrete. One 200 L drum of spent resin is packed inside the round concrete. In order to build a foundation for disposal of large concrete drums that generated in the past, it is necessary to develop a large concrete drum handling device and disposal suitability evaluation technology. In order to build handling equipment and establishment of disposal base, such as weight and volume, of square and round concrete containers must be identified. In addition, waste information, such as the production record of the built in drum and the type of contents, is required. Therefore, this study plans to comprehensively review the characteristics of the waste by investigating the structure of square and round concrete containers and the records of internal drum production.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Most of the radioactive wastes generated during the nuclear fuel processing activities conducted by KEPCO Nuclear Fuel Co., Ltd. are classified as the categories of intermediate and low-level radioactive waste. These radioactive waste materials are intended for permanent disposal at a designated disposal site, adhering strictly to the waste acceptance criteria. To facilitate the safe transportation of radioactive waste to the disposal site, it is necessary to ensure that the waste drums maintain a level of criticality that complies with the waste acceptance criteria. This necessitates the maintenance of subcritical conditions, under immersion or optimal neutron moderation conditions. This paper presents a criticality safety assessment of concrete radioactive waste under the most conservative conditions of immersion and moderation conditions for waste drums. Specifically, In order to send radioactive waste, which is the subject of criticality analysis, to a disposal facility, pre-processing operations must be performed to ensure compliance with waste accepatance criteria. To meet the physical characteristics required by the accepance criteria, particles below 0.2 mm should not be included. Thus, a 0.3 mm sieve is used to separate particles lager than 0.3 mm, and only those particles are placed in drums. The drums should be filled to achieve a filling ratio of at least 85%. A criticality analysis was conducted using the KENO-VI of SCALE. The Criticality Safety Analysis Results of varying the filling ratio of concrete drums from 85% to 100% presented in an effective multiplication factor of 0.22484. Additionally, the effective multiplication factor presented to be 0.25384 under the optimal moderation conditions. This demonstrates full compliance with the USL and criticality technology standards set as 0.95.
        6.
        2023.11 구독 인증기관·개인회원 무료
        In Natural Analogue Study, Concrete is one of the important engineering barrier components in the Multi-thin wall concept of radioactive waste disposal and plays the most important role in disposal sites. The concrete barrier at the disposal site loses its role as a barrier due to various deterioration phenomena such as settlement, earthquake, and ground movement, causing the disposed waste to leak into the natural ecosystem. Some of the key factor is deterioration triggered by sulfate attack. Concrete deterioration induced by sulfate is commonly manifested in an extensive scale when a concrete structure makes contact with soil or water, aggravating its performance. In this study, an accelerated concrete deterioration evaluation experiment was performed using a total of three experimental methods to evaluate the reaction between concrete and water. The first experiment was a deterioration evaluation using Demi. Water, the second was a deterioration evaluation using KURT groundwater after extraction, and the last experiment was a concrete deterioration evaluation using KURT groundwater and sodium sulfate. For all of these experiments, accelerated concrete deterioration experiments were conducted after immersion for a total of 365 days, and specimens were taken out at 30-day intervals and characterization analysis such as SEM and EDS was performed. Experimental analyzes have shown that various chemical species are generated or destroyed over time. In the future, we plan to continue to conduct a total of three concrete deterioration evaluation experiments above, and additionally evaluate the chemical reaction between bentonite and concrete.
        7.
        2023.05 구독 인증기관·개인회원 무료
        During decommissioning and site remediation of nuclear power plant, large amount of wastes (including radioactive waste) with various type will be generated within very short time. Among those wastes, soil and concrete wastes is known to account for more than 70% of total waste generated. So, efficient management of these wastes is very essential for effective NPP decommissioning. Recently, BNS (Best System) developed a system for evaluation and classification of soil and concrete wastes from the generation. The system is composed of various modules for container loading, weight measurement, contamination evaluation, waste classification, stacking, storage and control. By adopting modular type, the system is good for dealing with variable situation where system capacity needs to be expanded or contracted depending on the decommissioning schedule, good for minimizing secondary waste generated during maintenance of failed part and also good for disassemble, transfer and assemble. The contamination evaluation module of the system has two sub module. One is for quick measurement with NaI(Tl) detector and the other is for accurate measurement with HPGe detector. For waste transfer, the system adopts LTS (Linear Transfer System) conveyor system showing low vibration and noise during operation. This will be helpful for minimizing scattering of dust from the waste container. And for real time positioning of waste container, wireless tag was adopted. The tag also used for information management of waste history from the generation. Once a container with about 100 kg of soil or concrete is loaded, it is moved to the weight measurement module and then it transfers to quick measurement module. When measured value for radioactivity concentration of Co- 60 and Cs-137 is more than 1.0 Bq/g, then the container is classified as waste for disposal and directly transferred to stacking and storage rack. Otherwise, the container is transferred to accurate measurement module. At the accurate module, the container is classified as waste for disposal or waste for regulatory clearance depending on the measurement result of 0.1 Bq/g. As the storage rack has a sections for disposal and regulatory clearance respectively, the classified containers will be positioned at one of the sections depending on the results from the contamination evaluation module. The system can control the movement of lots of container at the same time. So, the system will be helpful for the effective nuclear power plant decommissioning in view of time and budget.
        8.
        2023.05 구독 인증기관·개인회원 무료
        Concrete decontamination tools capable of removing the nuclear contaminated surface are necessary to minimize the amount of concrete waste generated in the process of decontamination and dismantling of nuclear power plants. Laser scabbling is a decontamination technique that removes the contaminated surface layers concrete surface by inducing internal explosion. The application principle of laser scabbling technology uses the porous nature of concrete including moisture. When high thermal energy is applied to the concrete surface, an explosion at pores is induced along with an increase in water vapor pressure. High-powered laser beam can be an effective induction source of local explosive spalling on concrete surface. In this study, the scabbling test using a 5 kW highpowered fiber laser was conducted on the concrete blocks to establish the optimal conditions for surface decontamination. It was also measured the volume peeled off the concrete surface under the conditions of two different laser head speeds. Furthermore, we tested the removal efficiency of radioactive concrete particles generated during high-power fiber laser scabbling process. A 5 kW laser beam was applied to the concrete surface at two different laser head speeds - 120 mm/min and 600 mm/min. The laser beam repeatedly moved 200 mm horizontally and 40 mm vertically within the concrete block. The amount of surface concrete removed from concrete block was calculated from the measurement of the volume and mean depth using a 3D scanner device (laser-probed Global Advantage 9.12.8(HEXAGON)) for the two different the laser head speeds. By increasing the laser head speed, less explosive spalling occurred due to shorter contact time of the laser beam with the concrete. The laser head speed of 600 mm/min reduced about 89% of the waste generated by shallow depth of scabbling as compared to the waste generated at the laser head speed of 120 mm/min. The fiber laser scabbling system was developed for surface decontamination of radioactive concrete in nuclear power plants. Tests were performed to find the optimum parameters to reduce the generation of particulate waste from the contaminated concrete surface by controlling the laser head speeds. It was confirmed that the wastes from surface decontamination was reduced up to 89% by increasing laser head speed from 120 mm/min to 600 mm/min. It was also observed that the cylindrical tube effectively vacuumed the debris generated by the explosive spalling into the collector. Removal efficiencies of concrete particles were measured greater than 99.9% with ring blower power of 650 air watt of the filter system.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Laser scabbling has the potential to be a valuable technique capable of effectively decontaminating highly radioactive concrete surface at nuclear decommissioning sites. Laser scabbling tool using an optical fiber has a merits of remote operation at a long range, which provides further safety for workers at nuclear decommissioning sites. Furthermore, there is no reaction force and low secondary waste generation, which reduces waste disposal costs. In this study, an integrated decontamination system with laser scabbling tool was employed to test the removal performance of the concrete surface. The integrated decontamination system consisted of a fiber laser, remote controllable mobile cart, and a debris collector device. The mobile cart controlled the translation speed and position of the optical head coupled with 20 m long process fiber. A 5 kW high-powered laser beam emitted from the optical head impacted the concrete block with dimensions of 300 mm × 300 mm × 80 mm to induce explosive spalling on its surface. The concrete debris generated from the spalling process were collected along the flexible tube connected with collector device. We used a three-dimensional scanner device to measure the removed volume and depth profile.
        10.
        2022.10 구독 인증기관·개인회원 무료
        Concrete waste generated in the result of dismantling a concrete structure in a radiation control area and refractory brick waste generated from uranium pellet sintering furnace are surface-contaminated by uranium particle of which the enrichment is below 5%. These wastes are hard to decontaminate so it was necessary to develop the process for its disposal. So, we developed the Process Control Plan (PCP) for disposal of radioactive concrete waste describing a whole sequence of disposal and inspecting procedures based on the KNF Radioactive Waste Quality Assurance Plan (KN-WQAP) established in 2021. Based on the PCP, we crushed the concrete waste by jaw-crusher. Then we sieved the crushed concrete waste and removed the particle of which size is below 0.3 mm, using sieve-vibrator where the 0.3 mm mesh-sized sieve is installed inside. Before conducting the crush-sieving method based on the PCP, we conducted Process Control Assessment (PCA) based on the KN-WQAP. The purpose of the PCA is to check whether the output of the process satisfies the Acceptance Criteria of Korea Radioactive Waste Agency (KORAD) so that we could confirm the validity of the PCP. The evaluation item of the PCA is a particulate size verification test. The test is passed only if the component ratio of a particle size below 0.2 mm is less than 15% and the particle size below 0.01 mm is less than 1%. The very first 3 drums passed the test, so we began applying the PCP to whole target drums. In the process of conducting the crush-sieving method in earnest, qualified inspectors based on KNWQAP participated conducting sampling, measuring and checking whether a foreign material was included. They tested samples and packaged drums regarding 5 spheres of general, radiological, physical, chemical and biological characteristic. KNF disposed concrete and refractory brick waste by the crush-sieving method so that KNF could take over 100 drums to KORAD in 2021. But, it is needed to be improved that a dust size below 0.3 mm is generated as a secondary waste which needs to be solidified for the final disposal and the work environment is not good enough because of the dust.
        11.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive waste generated in large quantities from NPP decommissioning has various physicochemical and radiological characteristics, and therefore treatment technologies suitable for those characteristics should be developed. Radioactively contaminated concrete waste is one of major decommissioning wastes. The disposal cost of radioactive concrete waste is considerable portion for the total budget of NPP decommissioning. In this study, we developed an integrated technology with thermomechanical and chemical methods for volume reduction of concrete waste and stabilization of secondary waste. The unit devices for the treatment process were also studied at bench-scale tests. The volume of radioactive concrete waste was effectively reduced by separating clean aggregate from the concrete. The separated aggregate satisfied the clearance criteria in the test using radionuclides. The treatment of secondary waste from the chemical separation step was optimally designed, and the stabilization method was found for the waste form to meet the final disposal criteria in the repository site. The final volume reduction rates of 56.4~75.4% were possible according to the application scenario of our processes under simulated conditions. The commercial-scale system designs for the thermomechanical and chemical processes were completed. Also, it was found that the disposal cost for the contaminated concrete waste at domestic NPP could be reduced by more than 20 billion won per each unit. Therefore, it is expected that the application of this technology will improve the utilization of the radioactive waste disposal space and significantly reduce the waste disposal cost.
        12.
        2022.10 구독 인증기관·개인회원 무료
        Decommissioning waste is generated at all stages during the decommissioning of nuclear facilities, and various types of radioactive waste are generated in large quantities within a short period. Concrete is a major building material for nuclear facilities. It is mixed with aggregate, sand, and cement with water by the relevant mixing ratio and dried for a certain period. Currently, the proposed treatment method for volume reduction of radioactive concrete waste was involved thermomechanical and chemical treatment sequentially. The aggregate as non-radioactive materials is separated from cement components as contaminated sources of radionuclides. However, to commercialize the process established in the laboratory, it is necessary to evaluate the scale-up potential by using the unit equipment. In this study, bench-scale testing was performed to evaluate the scale-up properties of the thermomechanical and chemical treatment process, which consisted of three stages (1: Thermomechanical treatment, 2: Chemical treatment, 3: Wastewater treatment). In the first stage, lab, bench, and pilot scale thermomechanical tests were performed to evaluate the treated coarse aggregate and fines. In the second stage, the fine particles generated by the thermomechanical treatment process, were chemically treated using dissolution equipment, after then the removal efficiency and residual of cement in the small aggregate was compared with laboratory results. The final stage, the secondary wastewater containing contaminant nuclides was treated, and the contaminant nuclides could be removed by chemical precipitation method in the scale-up reactors. Furthermore, an additional study was required on the solid-liquid separation, which connected each part of the equipment. It was conducted to optimize the separation method for the characteristics of the particles to be separated and the purpose of separation. Therefore, it is expected that the basic engineering data for commercialization was collected by this study.
        13.
        2022.10 구독 인증기관·개인회원 무료
        In the case of decommissioning of a nuclear power plant, it is expected that a significant amount of VLLW and LLW that need to be disposed of are also expected. Conventional reduction technology is a method of extracting or removing radionuclides from waste, but this project is being carried out for the purpose of obtaining a reduction effect through the development of a material that treats another radioactive waste using radioactive waste. In this paper, the technology of impregnating LiOH capable of adsorbing radiocarbon to the gas filter material manufactured from concrete and soil waste as raw materials and the radiocarbon removal performance were reviewed. In this study, a raw material of ceramic filter was prepared by mixing concrete and soil waste with a powder of 40 m or less, and after sintering at 1,250°C, 5wt% to 40wt% of LiOH is impregnated with a filter capable of adsorbing carbon dioxide. was prepared. The prepared filter used ICP-OES and XRD to confirm the LiOH deposition result, and the concentration of carbon dioxide discharged through the carbon dioxide adsorption device was confirmed. It was possible to obtain the result that the amount of adsorption was changed depending on the flow rate of carbon dioxide supplied and the amount of material. Through this, it was possible to confirm the possibility of power generation in the adsorption performance of gas. In this study, after crushing waste concrete and waste soil, powders of 40 m or less were mixed with other additives to prepare raw materials for ceramic filters, and sintered at 1,250°C to manufacture filters. 5wt% to 40wt% of LiOH was impregnated on the prepared filter to give functionality to enable carbon dioxide adsorption. The results of LiOH deposition were confirmed using ICP-OES and XRD, and the change in the concentration of carbon dioxide emitted through a separately prepared adsorption device was confirmed. It was possible to obtain the result that the amount of adsorption was changed according to the flow rate of carbon dioxide supplied and the amount of material, and the possibility of developing a material for radioactive waste treatment using radioactive waste was confirmed when the porosity and specific surface area of the filter material were increased.
        14.
        2022.10 구독 인증기관·개인회원 무료
        The structural integrity of concrete silos is important from the perspective of long-term operation of radioactive waste repository. Recently, the application of acoustic emission (AE) is considered as a promising technology for the systematic real-time health monitoring of concrete-like brittle material. In this study, the characteristics of AE wave propagation through concrete silo of Gyeongju radioactive waste repository were evaluated under the effects of groundwater and temperature for the quantitative damage assessment. The attenuation coefficients and absolute energies of AE waves were measured for the temperature cases of 15, 45, 75°C under dry and saturated concrete specimens, which were manufactured based on the concrete mix same as that of Gyeongju concrete silo. The geometric spreading and material loss were taken into account with regard to the wave attenuation coefficient. The attenuation coefficient shows a decreasing pattern with temperature rise for both dry and saturated specimens. The AE waves in saturated condition attenuate faster than those in dry condition. It is found that the effect of water content has a greater impact on the wave attenuation than the temperature. The results from this study will be used as valuable information for estimating the quantitative damage at the location micro-cracks are generated rather than the AE sensor location.
        15.
        2022.05 구독 인증기관·개인회원 무료
        Wolsong unit 1 (W1), which is a CANDU-6 type PHWRs that had been operated for 30 years since 1983, was shutdown in 2019. In this study, the radioactive waste levels of calandria and concrete structures were calculated to establish a decommissioning plan for W1. The specific systems within the scope of this study were grouped into 6 major categories as follows: Calandria, End Shield, Fuel Channel Assembly, Reactivity Control Device, End Shield Support, Vault. The main operating history of W1 is that the re-tubing project was performed. These characteristics and operation history were reflected in the evaluation. The neutron flux and energy spectrum of each structure were calculated by using MCNP code, and ORIGEN code is implemented to the calculation of radioactivity for each nuclide using the results from MCNP and the material information of the structure. As for the impurity information, ASTM B350, B351, B353 standard was used for zircaloy alloy. For other alloy, impurity information provided by NUREG/CR-3474 was applied. Since W1 is expected to be decommissioned immediately, the waste level was evaluated under cooling conditions for 5 years after permanent shutdown. Through the level evaluation of each component obtained as a result of the study, it can be used as basic data for the radioactive waste management of the decommissioning plan.
        16.
        2022.05 구독 인증기관·개인회원 무료
        Source localization technique using acoustic emission (AE) has been widely used to track the accurate location of the damaged structure. The principle of localization is based on signal velocity and the time difference of arrival (TDOF) obtained from different signals for the specific source. However, signal velocity changes depending on the frequency domain of signals. In addition, the TDOF is dependent on the signal threshold which affects the prediction accuracy. In this study, a convolutional neural network (CNN)-based approach is used to overcome the existing problem. The concrete block corresponding to 1.3×1.3×1.3 m size is prepared according to the mixing ratio of Wolseong low-to-intermediate level radioactive waste disposal concrete materials. The source is excited using an impact hammer, and signals were acquired through eight AE sensors attached to the concrete block and a multi-channel AE measurement system. The different signals for a specific source are time-synchronized to obtain TDOF information and are transformed into a time-frequency domain using continuous wavelet transform (CWT) for consideration of various frequencies. The developed CNN model is compared with the conventional TDOF-based method using the testing dataset. The result suggests that the CNN-based method can contribute to the improvement of localization performance.
        17.
        2022.05 구독 인증기관·개인회원 무료
        In this study, a drop analysis of metallic disposal containers for radioactive wastes is performed according to accident scenarios at the disposal site. The weight of the disposal container is about 8 tons, and the ingot-type wastes are loaded in the disposal container. To simulate the floor of the disposal site as the impact target, the reinforced concrete pad is modeled. High impact energy of the disposal container due to their heavy weight and high drop height causes excessive deformation and failure of the concrete target having relatively weak strength. Dynamic growth of cracks due to such failures causes penetration and delamination of concrete. Since the impact force delivered to the container strongly depends on the failure of the concrete pad, it is important to properly simulate the failure of the concrete in the drop analysis. A material erosion method can be used to simulate the concrete failure. In the case of applying erosion based on the finite element method (FEM), the element is deleted when the element exceeds a certain criterion, which causes material and energy loss problem. To solve this problem, mesh-free methods such as smoothed particle hydrodynamics (SPH) can be commonly used, but the mesh-free method has the disadvantage of incurring high numerical cost. Therefore, an adaptive method combining SPH and FEM-based SOLID elements is used for concrete target modeling to simulate excessive deformation and failure of the concrete target. In the adaptive coupling method of SPH and SOLID, the concrete target is first modeled as a solid element. When the damage of concrete exceeds the failure criterion, the solid element is eroded and the SPH element replacing the solid element is activated. Since the activated SPH element continues to participate in the impact, the problem of loss of materials and energy can be effectively solved. In this way, analysis results consistent with actual physical phenomena can be obtained.
        1 2 3