검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 104

        21.
        2017.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.
        4,000원
        22.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at 700 °C for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO’s before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO’s after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % In2O3, 10 wt. % ZnO, and 10 wt. % SnO2 which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.
        4,000원
        23.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, Xray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric dischargecharge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.
        4,000원
        24.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.
        4,000원
        25.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) nanoparticles have been successfully synthesized using ultrasonic spray pyrolysis. The morphologies, crystal structures, chemical bonding states, and electrochemical properties of the nanoparticles are investigated. The FTO nanoparticles show uniform morphology and size distribution in the range of 6-10 nm. The FTO nanoparticles exhibit excellent electrochemical performance with high discharge specific capacity and good cycling stability (620mA h g−1 capacity retention up to 50 cycles), as well as excellent high-rate performance (250 mA h g−1 at 700mAg−1) compared to that of commercial SnO2. The improved electrochemical performance can be explained by two main effects. First, the excellent cycling stability with high discharge capacity is attributed to the nano-sized FTO particles, which are related to the increased electrochemical active area between the electrode and electrolyte. Second, the superb high-rate performance and the excellent cycling stability are ascribed to the increased electrical conductivity, which results from the introduction of fluorine doping in SnO2. This noble electrode structure can provide powerful potential anode materials for high-performance lithiumion batteries.
        4,000원
        26.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        파이로프로세싱 전해환원 공정에서 현재 사용 중인 Pt 양극을 대체하기 위한 소재 개발은 매우 중요하다. 이 연구에서는 전 기화학 반응시 산소를 발생시키는 전도성 세라믹 양극으로서 TiN의 전기화학적 거동을 알아보았다. UO2의 전해환원이 일어 나는 동안 TiN 양극의 적합성과 안정성에 대한 평가를 진행하였다. LiCl-Li2O 용융염에서 TiN 양극을 이용하여 UO2를 전기 화학적으로 금속 U로 변환시킬 수 있었다. 반응 도중 TiN의 산화 반응은 관찰되지 않았다. 하지만 TiN 내부에서 공공이 생 기는 것을 확인하였으며, 이에 따라 소재 수명에 제한이 있을 것으로 판단된다.
        4,000원
        28.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide (SnO2) coated Sn powders. The SnO2 coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at 50 oC with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at −25 oC. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at 670 oC in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at 1100 oC for 1 h in a hydrogen atmosphere, showed large pores of about 200 μm, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, 100 μm spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.
        4,000원
        29.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Diameter-controlled tin oxide nanofibers have been successfully prepared using electrospinning and a subsequent calcination process; their diameters, morphologies, and crystal structures have been characterized. The diameters of the as-spun nanofibers can be decreased by lowering the concentration of a polymer and a tin precursor in the electrospinning solution because of the decrease in the solution viscosity. The crystal structure of the nanofibers calcined at various temperatures from 200˚C to 800˚C has been proved to be the tetragonal rutile of tin oxide; crystallinity is improved by increasing the temperature. However, nanofibers with lower concentrations of tin precursor do not maintain their fibrous structures after calcination at high temperatures. In this study, the effect of the relationship between the precursor concentration and the calcination temperature on the diameter and the morphology of the tin oxide nanofiber has been systematically investigated and discussed.
        4,000원
        30.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        마이크론 크기를 가지는 ITO(indium tin oxide) 입자들은 인듐과 틴의 수용성 전구체들과 유기 첨가제를 분무 열분해하여 얻었다. 유기 첨가제로서는 에틸렌글리콜과 시트르산을 이용하였다. 분무 열분해 시 에틸렌글리콜과 시트르산과 같은 유기첨가제를 첨가하지 않고 얻어진 ITO 입자들은 구형이며 속이 꽉찬 형태를 가지는데 비해 유기 첨가제를 첨가하여 분무 열분해를 하면 얻어지는 ITO 입자들은 유기 첨가제의 양이 증가 할수록 껍질이 얇고 다공성이 증대된 중공 입자가 얻어진다. 유기첨가제를 첨가하지 않고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간동안의 습식 볼밀링에 의해 나노 크기의 ITO로 전환되지 않으나, 유기첨가제를 첨가하고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간 동안의 습식 볼밀링에 의해 나노 크기의 ITO로 쉽게 전환되었다. 응집된 나노 크기의 ITO의 일차 입자의 크기를 Debye-Scherrer 식에 의해 계산하였고 ITO 입자를 압축하여 만든 펠렛의 표면저항을 측정하였다.
        4,000원
        31.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fundamental experiences have been studied for development of pre-treatment process of Sn by-prod-ucts such as solders. Dry and wet separation/recovery processes were considered by the differences of physicalproperties. The by-products, which are analyzed by solder metal and oxides. The metal and oxide were simplyseparated by dry ball-milling process for 12 hours, after that recovery metal powder might be reusable as lead orlead-free solders. In terms of wet separation process, samples were dissolved in HNO3+H2O2 and the precipita-tion were analyzed by SnO2. Overall efficiency of recovery might be increasing via developing simple pre-treat-ment process.
        4,000원
        32.
        2013.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film witha hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45GHz of high ionization energy wereinvestigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity wereobtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron depositionpositions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. Thesurface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined usingSEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonancecondition was uniformly formed in at a position 16cm from the center along the Z-axis. The plasma spatial distribution ofmagnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. Therelative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current rangeof 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50cm revealedthat the grains were uniformly distributed with sizes in the range of 2~7nm. In our experimental range, the electrical resistivityof film was able to observe from 1.0×10−2 to 1.0×10−1Ωcm where optical transmittance at 550nm was 87~89%. Theseproperties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.
        4,000원
        33.
        2013.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a 1mm×1mm vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.
        4,000원
        34.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.
        4,000원
        35.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at 1000˚C for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at 1500˚C for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.
        4,000원
        36.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.
        4,000원
        37.
        2011.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from 0.1kg/cm2 to 3kg/cm2, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from 0.1kg/cm2 to 1kg/cm2, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to 3kg/cm2, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at 0.1kg/cm2, the average particle size is approximately 100 nm; when the air pressure increases up to 0.5kg/m2, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to 1kg/cm2, the surface structure is almost the same as in the case of 0.5kg/cm2, and the average particle size is around 80- 100 nm; when the air pressure increases up to 3kg/cm2, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from 0.1kg/cm2 to 0.5kg/cm2, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to 1kg/cm2 and 3kg/cm2, the XRD peak intensity increases, while the specific surface area also increases.
        4,000원
        38.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.
        4,000원
        39.
        2011.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A nano-porous structure of tin oxide was prepared using an anodic oxidation process and the sample's electrochemical properties were evaluated for application as an anode in a rechargeable lithium battery. Microscopic images of the as-anodized sample indicated that it has a nano-porous structure with an average pore size of several tens of nanometers and a pore wall size of about 10 nanometers; the structural/compositional analyses proved that it is amorphous stannous oxide (SnO). The powder form of the as-anodized specimen was satisfactorily lithiated and delithiated as the anode in a lithium battery. Furthermore, it showed high initial reversible capacity and superior rate performance when compared to previous fabrication attempts. Its excellent electrode performance is probably due to the effective alleviation of strain arising from a cycling-induced large volume change and the short diffusion length of lithium through the nano-structured sample. To further enhance the rate performance, the attempt was made to create porous tin oxide film on copper substrate by anodizing the electrodeposited tin. Nevertheless, the full anodization of tin film on a copper substrate led to the mechanical disintegration of the anodic tin oxide, due most likely to the vigorous gas evolution and the surface oxidation of copper substrate. The adhesion of anodic tin oxide to the substrate, together with the initial reversibility and cycling stability, needs to be further improved for its application to high-power electrode materials in lithium batteries.
        4,000원
        40.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A cobalt oxide - tin oxide nanocomposite based gas sensor on an SiO2 substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of H2. The composites showed a highest response of 240% at 250˚C upon exposure to 4% H2. This response is higher than those observed in pure SnO2 (90%) and Co3O4 (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.
        4,000원
        1 2 3 4 5