검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 65

        1.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Nanosized WO3 and CuO powder mixture is prepared using novel high-energy ball milling in a bead mill to obtain a W-Cu nanocomposite powder, and the effect of milling time on the structural characteristics of WO3-CuO powder mixtures is investigated. The results show that the ball-milled WO3-CuO powder mixture reaches at steady state after 10 h milling, characterized by the uniform and narrow particle size distribution with primary crystalline sizes below 50 nm, a specific surface area of 37 m2/g, and powder mean particle size (D50) of 0.57 μm. The WO3-CuO powder mixtures milled for 10 h are heat-treated at different temperatures in H2 atmosphere to produce W-Cu powder. The XRD results shows that both the WO3 and CuO phases can be reduced to W and Cu phases at temperatures over 700oC. The reduced W-Cu nanocomposite powder exhibits excellent sinterability, and the ultrafine W-Cu composite can be obtained by the Cu liquid phase sintering process.
        4,000원
        2.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure evolution during sintering of the W-5 wt.%Cu nanocomposite powders was investigated for the purpose of developing a high density W-Cu alloy. The W-5 wt.%Cu nanopowder compact, fully-densified during sintering at 1623 K, revealed a homogeneous microstructure that consists of high contiguity structures of W-W grains and an interconnected Cu phase located along the edges of the W grains. The Vickers hardness of the sintered W-5 wt.%Cu specimen was Hv much higher than that ( Hv) of the conventional heavy alloy. This result is mostly due to the higher contiguity microstructure of the W grains compared to the conventional W heavy alloy.
        3,000원
        3.
        2006.09 구독 인증기관·개인회원 무료
        An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from WO3 and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at 1300 oC for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region.
        4.
        2006.09 구독 인증기관·개인회원 무료
        W-Cu alloy was very useful material for a heat sink, high electric contact and EDM electrode. Powder injection molding (PIM) is the optimum manufacturing technology to provide W-Cu components with low-cost and high-volume. We used various compositions of tungsten coated copper powders (W-Cu with 10 to 80 wt-% of copper) to manufacture W-Cu components by PIM. The optimum mixing, injection molding, debinding and sintering conditions to provide the high performance W-Cu components were investigated. The thermal and mechanical properties of W-Cu parts by PIM were measured. Finally, we can verify the high performance of W-Cu components by PIM with the tungsten coated copper.
        5.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of Cu content on hydrogen reduction behavior of ball-milled -CuO nanocomposite powders was investigated. Hydrogen reduction behavior and reduction percent() of nanopowders were characterized by thermogravimetry (TG) and hygrometry measurements. Activation energy for hydrogen reduction of nanopowders with different Cu content was calculated at each heating rate and reduction percent(). The activation energy for reduction of obtained in this study existed in the ranging from 129 to 139 kJ/mol, which was in accordance with the activation energy for powder reduction of conventional micron-sized
        4,000원
        6.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work illustrates the use of water-soluble cupric salts as ingredients of binder for injection molding of Cu. Parts produced are dense, homogeneous and have good surface finish, compared to those produced using conventional binder system. This new binder system provides also process-simplification benefit. with the purity of was selected for this study. Rapid sintering process involving thermal decomposing was successful in densification for 1h. Final density that is about of theoretical value could be obtained, and are distinguishable from conventionally processed W-Cu composites.
        4,000원
        11.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W-Cu composite has been used for the applications requiring both high strength, good thermal and electrical conductivity. A graded combination of W and Cu will reduce thermal stress concerned with heat conduction, maintaining good thermal conductivity and high mechanical strength. In the present work, an attempt was made to fabricate continuous W-Cu FGM by preparing the graded porous structure of W skeleton using spark plasma sintering (SPS) process followed by infiltrating Cu. The graded porous structure was prepared at 150 for 60s under pressure of 15MPa by SPS process using a graphite mold with varying crr)ss section in the longitudinal direction. Infiltration of Cu was performed at 115 for 1 hour under . W-Cu composite with graded Cu composition of 14 to 27 wt% was finally prepared. In this process the gradient of composition could be conveniently controlled by varying the gradient of cross sectional area of graphite mold, temperature and pressure.
        4,000원
        12.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrical and thermal conductivity of W-Cu composites were investigated as a function of the W-particle size and W-W contiguity. Powder mixtures were prepared by ball milling or mechanical alloying process, and then sintered at various temperatures. The electrical conductivity of sintered composite was increased with decreasing W grain size. Dependence of electrical conductivity on the W grain size was explained by the W-W contiguity concept. The thermal conductivity was increased with increasing the temperature up to but decreased at the temperature above Also, thermal conductivity value was influenced by the W particle size. Change of thermal conductivity in W-Cu composites was discussed based on the observed microstructural characteristics and theoretical considerations.
        4,000원
        13.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduction mechanism of the composite powders mixed with and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20 to 30. Then, powder is reduced to W via W and W at higher temperature region. Finally, the gaseous phase of formed by reaction of with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and powder.der.
        4,000원
        15.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the fabrication process of W-Cu nanocomposite powders has been researched to improve the sinterability by mechanochemical process (MCP), which consists of ball milling and hydrogen-reduction with W- and Cu-oxide mixture. However, there are many control variables in this process because the W oxides are hydrogen-reduced via several reduction stages at high temperature over 80 with susceptive reduction conditions. In this experiment, the W-15 wt%Cu nanocomposite powder was fabricated with the ball-milling and hydrogen-reduction process using W and CuO powder. The microstructure of the fabricated W-Cu nanocomposite powder was homogeneously composed of the fine W particles embedded in the Cu matrix. In the sintering process, the solid state sintering was certainly observed around 85 at the heating rate of 1/min. It is considered that the solid state sintering at low temperature range should occur as a result of the sintering of Cu phase between aggregates. The specimen was fully densified over 98% for theoretical density at 120 for 1 h with the heating rate of 1/min.
        4,000원
        20.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Resistance sintering under ultra-high pressure if developed to fabricate W-Cu composite containing 5 to 80v/o copper. The consolidation was carried out under pressure of 6 to 8 GPa and input power of 18 to 23 kW for 50 seconds. The densification effect and microstructure of these W-Cu composites are investigated. The effect of W particle size on ,sintering density was also studied. The micro hardness was measured to evaluate the sintering effect.
        4,000원
        1 2 3 4