검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 89

        41.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The surface roughness of Al, Ag and Ni nano-powders which were prepared by pulsed wire evaporation method was quantified based upon the fractal theory. The surface fractal dimensions of metal nano-powders were determined from the linear relationship between In and Inln () using multi-layer gas adsorption theory. Moreover, the fractal surface image was realized by computer simulation. The relationship between preparation condition and surface characteristics of metal nano-powders was discussed in detail.
        4,000원
        42.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about . Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.
        4,000원
        43.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is well known that thermal plasma process has lots of advantages such as high temperature and good quality for synthesis of nano particles. In this research, we attempt the synthesis of nano unitary and composite powder (Ag, Mg-Al, Zr-V-Fe) using transferred thermal plasma. Nano particles of metal alloy, ranging from 20 nm to 150 nm, have been synthesized by this process.
        4,000원
        44.
        2006.09 구독 인증기관·개인회원 무료
        Cr2AlC was synthesized by a reactive hot pressing of CrCx (x=0.5) and Al powder mixture used as starting materials at the temperature range of 1200 oC~1400 oC under 25 MPa in Ar atmosphere. Fully dense Cr2AlC with high purity was synthesized by hot pressing CrCx and Al powder mixture at the temperature as low as 1200 oC. The average grain size of synthesized bulk Cr2AlC was varied in the range of 10-100 ㎛ depending on hot pressing temperatures. The maximum flexural strength of synthesized bulk Cr2AlC exceeded 600 MPa.
        45.
        2006.04 구독 인증기관·개인회원 무료
        Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at for 5 hours.
        47.
        2006.04 구독 인증기관·개인회원 무료
        Synthesis of iron nanopowder by room-temperature electrochemical reduction process of nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of h and V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.
        48.
        2006.04 구독 인증기관·개인회원 무료
        Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of ion was observed in the sample sintered at .
        50.
        2006.04 구독 인증기관·개인회원 무료
        Thermal management technology is a critical element in all new chip generations, caused by a power multiplication combined with a size reduction. A heat sink, mounted on a base plate, requires the use of special materials possessing both high thermal conductivity (TC) and a coefficient of thermal expansion (CTE) that matches semiconductor materials as well as certain packaging ceramics. In this study, nano tungsten coated copper powder has been developed with a wide range of compositions, 90W-10Cu to 10W-90Cu. Powder technologies were used to make samples to evaluate density, TC, and CTE. Measured TC lies among theoretical values predicted by several existing models.
        51.
        2006.04 구독 인증기관·개인회원 무료
        In order to develop the nano-sized WC powder that improved the hardness of hardmetals, carbothermal reduction of WO3 by C was examined by using the thermogravimetric analysis. At the direct carburization reaction path of , the nano-sized grain was generated at the reaction stage to and W. For trial production, the intermediate products which consists of metal and carbide phases obtained by the first heating has been carburized to the final WC powder. We succeeded in the development of the WC powder of about 70nm. In addition, the nano-sized WC powder in which the vanadium of the most effective grain growth inhibitor was uniformly dispersed was developed.
        53.
        2006.04 구독 인증기관·개인회원 무료
        Densification behavior of nano-agglomerate powder during pressureless sintering of Fe-Ni nanopowder was investigated in terms of diffusion kinetics and microstructural development. To understand the role of agglomerate boundary for sintering process, densification kinetics of Fe-Ni nano-agglomerate powder with different agglomerate size was investigated. It was found that activation energy for densification was lower in the small-sized agglomerate powder. The increase in the volume fraction of inter-agglomerate boundary acting as high diffusion path might be responsible for the enhanced diffusion process.
        54.
        2006.04 구독 인증기관·개인회원 무료
        Multilayer ceramic capacitor (MLCC) miniaturization has increased the demand for superfine powder due to its thin dielectric layer. Hydrothermally synthesized powder a pseudo-cubic phase resulting in poor dielectric properties due to size effect and hydroxyl ion inclusion in the lattice. We attempted a superfine (lower than 100 nm) highly tetragonal powder via a solvothermal method without precipitating agent. The lattice parameters and the relative amounts of tetragonal and cubic phases were determined using Rietveld refinement.
        55.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from , the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to It shows AlO(OH) sequences. The compacted at shows a high surface area .
        4,000원
        59.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to , the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.
        4,000원
        1 2 3 4 5