Sound Stress Alters Physiological Processes in Digestion and Immunity and Enhances Insecticide Susceptibility of Spodoptera exigua
This study analyzed effects of different sound treatments in frequencies and intensities on digestion and immune physiological processes of the beet armyworm, Spodoptera exigua larvae. Without effect on egg hatch, sound treatments with 100-5,000 ㎐ at 95 ㏈ suppressed feeding behavior and inhibited a digestive enzyme activity. In addition, two dimensional electrophoresis of midgut luminal proteins indicated a marked difference of the sound-treated larvae. In response to 5,000 ㎐ at 95 ㏈, larvae showed a significant decrease in hemocyte nodule formation against fungal challenge along with significant suppression in phospholipase A₂ activity in hemocyte and plasma. With increase of sound frequencies, the treated larvae showed an enhanced susceptibility to insecticides. Such sound frequency effect was significantly modulated with different sound intensities. These results suggest that sound treatment may give adverse stress to physiological processes of S. exigua larvae and may be applied to a nonchemical insect pest control.